TD Toyota Prius.doc 1/4
A2 Analyser le système
Systèmes logiques évenementiels
Date :
Cours
TD
1 h
Nom :
I Présentation
La résolution des problèmes la chronologie des événements n’intervient pas (logique combinatoire)
induit de connaître l'algèbre de Boole. Cette algèbre permet de traduire des signaux (tout ou rien) en
expressions mathématiques en remplaçant chaque signal élémentaire par des variables logiques et leur
traitement par des fonctions logiques.
II Support de l’étude : technologie HSD duhicule HYBRIDE TOYOTA PRIUS
Dans le contexte actuel d’économie des énergies fossiles
et de réduction des émissions de gaz nocifs, le système de
propulsion hybride constitue une alternative intéressante à
la propulsion classique par moteur thermique seul car il
permet de réduire la consommation. La technologie
hybride de la Toyota Prius, nommée HSD (Hybrid
Synergy Drive) est présentée dans cet exercice.
Une spécificité de la solution retenue sur la Prius consiste
à exploiter le moteur thermique à son rendement optimal.
Pour cela une gestion optimale des modes de fonctionnement du système hybride permet d’optimiser la
consommation d’énergie chimique : la mise en route du moteur thermique et l'asservissement de sa
vitesse permettent d'exploiter au mieux ce moteur. La loi de mise en marche du moteur thermique MT,
qui sera notre variable de sortie, est une loi combinatoire. Les variables d’entrée sont :
Paramètres de contrôle du système HSD :
La consigne EV, pour un fonctionnement « Tout Electrique », jusqu’à une vitesse de 50 km/h.
Le Sélecteur de Marche Avant (MA = 1 si enclenché, 0 sinon), Arrière ou Point Mort.
Pdemandée, (puissance motrice + puissance demandée par les composants auxiliaires). On définie la variable
Ptot ; Ptot =1 si la puissance demandée est supérieure à 6 kW.
Fr, associée à l’appui sur la pédale de frein ; Fr = 1 indique un appui sur cette pédale.
Variables binaires de fonctionnement
Ve, associée à la vitesse du véhicule ; Ve = 1 si la vitesse est supérieure à 50 km/h.
Te associée à la température de l’eau du moteur ; Te = 1 si la température est supérieure à 50°C.
Schéma fonctionnel associé
EV
MA
Fr
Ptot
Ve
Te
Maintenant que nous avons fini les variables, nous devons connaître les conditions de fonctionnement
avant de pouvoir établir l’équation logique qui pilote notre système.
MT
Mise en marche du
moteur thermique
TD Toyota Prius.doc 2/4
A partir des conditions de fonctionnement du moteur thermique, il est alors possible de déterminer la loi
qui définit la variable de commande du moteur MT.
Les conditions de fonctionnement priorisées sont :
Arrêt impératif à l’arrêt du véhicule et en marche arrière ;
L’appui sur le bouton EV = 1 interdit toute mise en route du moteur thermique si la vitesse du
véhicule est inférieure à 50 km/h ;
Si la puissance demandée totale dépasse 6 kW, le moteur thermique doit se mettre en marche,
sauf si EV = 1 ;
Si la température de l’eau du moteur est inférieure à 50°C, le moteur thermique doit se mettre en
marche (pour conserver un bon rendement au redémarrage), sauf si EV = 1 ;
Si la vitesse du véhicule est supérieure à 50 km/h, le moteur thermique est en marche sauf si la
pédale de frein est actionnée ;
L’appui sur la pédale de frein arrête le moteur thermique, sauf si la température de l’eau du
moteur est inférieure à 50°C ;
Dans les autres cas le moteur est éteint.
III Elaboration de la table de vérité
Approche simplifiée
Vous avez vu dans le TP sur l’étude des fonctions logiques qu’une
fonction de n variables est représentée par une table de vérité à 2n lignes.
Dans notre étude nous devrions faire un tableau avec 64 (26) lignes.
Nous allons dans un premier nous intéresser aux seules variables d’entrée
Ptot, Fr, Ve et Te, pour déterminer l’état logique de MT que nous noterons
MT1.
Nous tiendrons compte de MA et EV dans un second temps.
Les états impossibles notés Ø correspondent au fait qu’il est incompatible
de freiner alors que le véhicule signale qu’il a besoin de puissance motrice.
A l’aide de la description des variables d’entrée et des conditions de
fonctionnement priorisées, compléter la table de vérité ci-contre.
Expression de MT1 = f(Ptot, Fr, Ve, Te)
Dans la table de vérité chaque 1 de la variable MT1 correspond à un
terme logique. La somme logique de tous ces termes constitue alors la
fonction logique MT1. L'équation obtenue est complexe (nombre de
variables important) et nécessite une simplification en utilisant les règles de
lalgèbre de Boole.
Pour simplifier l’expression de MT1, il faudrait pouvoir regrouper les
lignes (pour lesquelles MT1 = 1) ayant au moins une variable commune.
Ainsi le nombre et la longueur des termes de l’expression seraient réduits.
Malheureusement ce n’est pas facile à faire car, comme vous l’avez vu
dans le cours sur le codage de l’information, plusieurs variables peuvent
changer simultanément entre deux lignes consécutives.
Pour faciliter notre étude nous allons nous intéresser à la méthode du tableau de Karnaugh
IV Tableau de Karnaugh
Le tableau de Karnaugh est un tableau qui comporte 2n cases, n étant le nombre de variables d'entrée
du système (de la fonction à représenter). Il faut réaliser un tableau de Karnaugh par variable de sortie.
Les n variables d’entrée sont réparties en variables associées aux colonnes et en variables associées aux
lignes. En tête de chaque colonne, on place les états successifs des variables associées aux colonnes.
L'organisation des états de ces variables doit respecter le codage Gray (binaire fléchi). On procède
de même en tête des lignes, avec les autres variables.
Ptot
Fr
Te
MT1
0
0
0
0
0
1
0
0
0
0
0
1
0
1
0
0
1
1
0
1
0
0
1
1
1
0
0
1
0
1
1
0
0
1
0
1
1
1
0
Ø
1
1
1
Ø
1
1
0
Ø
1
1
1
Ø
TD Toyota Prius.doc 3/4
Le fait de respecter le codage Gray, assure que le passage d'une case à une case adjacente ne
modifie l'état que d'une seule variable d'entrée.
On associe la valeur "0" ou "1" à chaque case en fonction de l'état de la sortie logique du système. Ainsi
chaque case du tableau représente un état des variables d'entrée. On associe alors à chaque case le
terme logique correspondant (voir exemple ci-dessous).
Exemple :
Le tableau de Karnaugh de ce système possède 24 cases soit 16 cases :
22 = 4 colonnes et 22 = 4 lignes.
On associe aux colonnes les variables a et b, et aux lignes les variables c et d.
La case grisée dans le tableau correspond à l'état suivant des variables : (a, b, c, d) = (0, 1, 0,
1)
Le terme logique assoc à cette case est alors :
dc..b.a
Pour cette case la valeur de la sortie vaut "1", et il existe six autres cases ayant la même valeur. La
sortie est la somme logique des termes associés à ces cases. Ainsi on pourrait écrire l'expression de la
fonction de la manière suivante :
da.b.c.d.b.c.a.b.c.da.c.db.adc..b.adc.a.b.dc..b.aS
Remarque : cette expression n'est pas la plus simple, on retrouve la même expression que celle obtenue
à partir de la table de vérité. Il nous reste donc à montrer l'intérêt du tableau de Karnaugh pour la
simplification des équations.
Présentation de la méthode dans le cas général :
Les règles qui suivent, sont celles qui permettent les simplifications optimales, donnant l'expression
logique de la sortie.
1. Effectuer des regroupements de deux cases, quatre cases, 2n cases..., ayant la valeur "1", en ligne,
en colonne, en carré.
2. Effectuer le moins de regroupements possible, et des regroupements de plus grande dimension
possible.
3. Recouvrir toutes les cases de valeur "1".
4. Les recouvrements entre regroupements sont possibles.
5. Une case d'un bord est aussi adjacente à celle correspondante du bord opposé (on vérifie facilement
que seul l'état d'une variable est modifié).
6. un regroupement de 2 cases permet l'élimination d'une variable, un regroupement de 4 cases
l'élimination de deux variables, etc...
7. La valeur de la sortie est alors la somme logique (+) des termes associés à chaque regroupement.
Remarque : la règle n°5 se comprend facilement en considérant un modèle cylindrique du tableau de
Karnaugh, soit horizontal, soit vertical, qui assure une continuité du tableau.
(a, b)
0 0
0 1
1 1
1 0
0 0
0
1
1
0
(c, d)
0 1
0
1
0
0
1 1
1
1
0
0
1 0
0
1
1
0
Système
a
b
c
d
S
TD Toyota Prius.doc 4/4
Application à l’exemple :
L’étude du tableau de Karnaugh ci-contre conduit à trois
regroupements (1), (2), (3) :
Groupement (1) : b est commun aux deux colonnes et
d
est
commun aux deux lignes du regroupement b.
d
Groupement (2) :
.ba
est la colonne du regroupement
.ba
Groupement (3) :
a
est commun aux deux colonnes et
c.d
à
la ligne du regroupement
.c.da
L'expression logique minimale de la sortie est :
.c.da.badb.S
Remarques :
Une case à l'intersection de deux regroupements, a pour terme logique associé, le produit logique
des termes de chaque regroupement. ET [ de deux zones].
L'union de deux regroupements, a pour terme logique associé, la somme logique des termes de
chaque regroupement. OU [ de deux zones].
Il est également possible de raisonner sur les cases de valeurs "0". La marche est identique, le
résultat trou est alors le compment logique de la sortie. Il suffit donc ensuite de
complémenter ce résultat pour obtenir l'expression de la sortie logique S.
V Equation logique de la mise en marche du moteur thermique
Compléter le tableau de Karnaugh de la variable MT1 à partir de la
table de vérité de la page 2.
Tracer les regroupements, en considérant les cas impossible Ø
pouvant être affectés de la valeur "0" ou "1" afin d'obtenir la meilleure
simplification.
Donner l’expression de MT1. MT1 =
Analyser les conditions de mise en marche avec les variables MA
et EV et en duire l’expression complète de MT en fonction des six
variables d’entrée. MT =
Identifier, sur la figure suivante, les différents modes de fonctionnement (Mode 1 : tout électrique,
mode 2 : hybride, Mode 3 : récupération d’énergie) du système HSD au cours du temps.
(a, b)
0 0
0 1
1 1
1 0
0 0
0
1
1
0
(c, d)
0 1
0
1
0
0
1 1
1
1
0
0
1 0
0
1
1
0
(Ve, Te)
MT1
0 0
0 1
1 1
1 0
0 0
(Ptot,Fr)
0 1
1 1
Ø
Ø
Ø
Ø
1 0
(1)
(2)
(3)
modes
PME : puissance
moteur électrique
PMT : puissance
moteur thermique
1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !