Courants et champs magnétiques en régime - MP*1

MP*1- 2015/2016
Courants et champs magnétiques en régime
stationnaire
Les courants
1) Etude d’une diode de Flemming :
En 1904, la diode de FLEMING a été un détecteur très bien accueilli pour la détection
des ondes radio. Outre la fonction de détection, elle a permis très tôt le redressement du
courant alternatif surtout dans ses variantes à gaz ou à vapeur de mercure.
On modélise cette diode par deux électrodes de géométrie identique, distantes de , de
surfaces parallèles . La cathode est portée à un potentiel   et l’anode à . La cathode
est chauffée et émet des électrons à une vitesse suffisamment faible pour être considérée
comme nulle par la suite. Les électrons ne sont pas relativistes. Il y a une intensité définie
sur le schéma.
On se place en régime stationnaire. Toutes les valeurs ne dépendent que de .
Après avoir relié la vitesse des électrons au potentiel  d’une part et à la densité
volumique de charge  d’autre part, montrer que  rifie une équation du type :
0
2
1
2
2
V
dxVd
. On cherchera des solutions de la forme . En déduire   
2) Attention à la foudre :
Par temps d’orage, la Terre est assimilé à un plan conducteur de conductivité  
. Quand la foudre tombe, un arbre est assimilé à une tige conductrice parcourue
par un courant . Près de l’arbre se trouve une personne, les jambes légèrement
écartées, ses pieds étant en et sur le sol. On prendra     . La résistance
électrique du corps de la personne entres ses pieds vaut   
1) Donner l’expression du vecteur densité de courant en un point quelconque dans le
sol. 2) En déduire le potentiel électrique en un point quelconque dans le sol en supposant
le potentiel nul à l’infini.
U
I
A
C
x
𝜃
𝑂
𝐼𝑜
𝑗
3) Si le cœur est traversé par un courant supérieure à   il y a risque de
défibrillation cardiaque pouvant entrainer la mort. A quelle distance minimale  la
personne doit-elle être pour qu’il n’y ait pas de danger.
Champ magnétique :
3) Champ magnétique dans un tokamak :
Un tokamak est une chambre torique de confinement magnétique destinée à contrôler
un plasma pour étudier la possibilité de production d’énergie par fusion nucléaire.
Le champ magnétique principal est créé par une série de bobines supraconductrices
constituant un solénoïde en forme de tore. On note le nombre total de spires, chacune
parcourue par le courant . On suppose les spires suffisamment rapprochées pour considérer
qu’elles forment une distribution continue de courant.
1) Déterminer le champ magnétique à l’intérieur et à l’extérieur du tokamak.
2) Le Tokamak JET peut produire au centre du tore, est confiné le plasma, un
champ magnétique de Teslas. Le rayon intérieur du tokamak est  et le rayon extérieur
. Calculer le courant total  qui doit circuler dans les bobines et conclure.
4) Sources d’un champ magnétique :
1) Proposer une distribution de courant créant le champ magnétique suivant :
    
;     
 
. Pour   le champ magnétique est nul.
   .
2) On place un électron en , de masse , de charge avec une vitesse
initiale  
. Déterminer la trajectoire de l’électron. On suppose que les charges de la
distribution de courant n’engendrent pas de frottements et on néglige le poids.
5) Milieu supraconducteur :
Un milieu supraconducteur    peut être modélisé par la distribution de courant
suivante :  

pour   ;
pour  .
Déterminer, en tout point de l'espace, le champ magnétique créé par le
supraconducteur.
Dipôle magnétique :
6) Moment magnétique de l’électron :
Pour comprendre le moment magnétique de l’électron on considère deux phénomènes,
sa rotation autour du noyau et son spin.
1) L’électron, de masse et de charge , tourne autour du noyau de charge +e à
une distance de a. Quel est le moment magnétique du à cette rotation ? On prendra  
      . En mécanique quantique, on introduit le
magnéton de Bohr dont la valeur du moment magnétique est 
 avec  
s. Commenter les ordres de grandeur.
2) Une interprétation simpliste du spin de l’électron consiste à modéliser ce dernier par
une boule, de rayon R, porte la charge totale  uniformément répartie à sa surface. Cette
boule est animée d'un mouvement de rotation à la vitesse angulaire
constante autour d'un de
ses diamètres. Calculer le moment magnétique
M
de cette distribution de courant. Cette
modélisation (complètement fausse !) est basée sur la description du mouvement de la Terre
par rapport au Soleil. On va donc supposer que la vitesse angulaire de l’électron sur lui-même
est dans le même rapport pour sa rotation autour du proton que celui de la Terre entre son
mouvement sur elle-même et son mouvement autour du Soleil. Cette interprétation vous
semble-t-elle cohérente ?
On donne :   
.
7) Oscillations couplées de deux dipôles magnétiques
On considère dans un plan  deux dipôles magnétiques identiques, de moments
et
, placés en et , distants de . et sont mobiles sans frottements autour de
leurs axes respectifs 
et 
.
Etudier les petits mouvements du système autour de l'une de ses positions d'équilibre.
On introduira les paramètres pertinents.
Déviation de particules chargées dans des champs magnétiques.
8) Diffusion dans une chambre à bulles :
On observe, à l’aide d’une chambre à bulles placées dans un champ magnétique
uniforme, la diffusion élastique de particules par des
noyaux de deutérium. Après la diffusion, les particules
et les noyaux de deutérium ont des trajectoires circulaires,
orthogonales au champ magnétique et de même rayon R.
En déduire l’énergie des particules incidentes.
9) Spectromètre de masse :
Le spectromètre de masse permet de mesurer la masse des particules chargées avec
une précision telle qu’il peut servir à déterminer des compositions isotopiques d’éléments
chimiques. Une source émet des ions mercure 

 et 

 .
1) Les ions, de masse et de charge  , émis sans vitesse initiale, sont
d’abord accélérés entre deux fentes et
    .
Proposer un montage qui permet d’accélérer ces ions et calculer leurs vitesses en .
2) Les ions rentrent ensuite dans une région règne un champ magnétique uniforme
de valeur   . Proposer un montage pour séparer ces ions selon leurs masses. Deux
collecteurs et sont situés de telle sorte que et soient alignés et perpendiculaires
aux vitesses des ions en . On donne   et  . Cette installation
vous semble-t-elle correcte ?
3) Les quantités d’électricités reçues en une minute par les collecteurs et sont
  et  . Déterminer la composition du mélange d’ions et en
déduire la masse atomique du mercure.
On donne :     .
10) Trois charges dans un champ magnétique uniforme :
On prend trois charges dans un plan, reliées par des fils de longueur égale .
L’ensemble forme un triangle équilatéral. Un fil transportant un courant est orthogonal à ce
triangle et passe par son centre de gravité.
1) A l’instant   , on coupe les fils. Le mouvement est-il plan ? Montrer que le
système se translate suivant l’axe , parallèle au fil conducteur.
2) Etablir une équation différentielle du premier ordre en r, composante radiale des
coordonnées cylindriques.
3) A partir d’un moment, le système arrive-t-il à un mouvement limite ?
11) Lentille magnétique.
Des électrons de vitesse initiale sont envoyés à travers une lentille magnétique où
règne un champ
tel que   et   

 .
1) Ecrire les trois équations scalaires traduisant la loi de la quantité de mouvement
appliquée à l’électron.
2) Montrer que 
 
 avec à déterminer. En supposant   en
dehors de la lentille, déterminer lévolutions de dans la lentille en fonction de et de
et une relation reliant  et  dans la lentille en fonction de et de .
3) Montrer que le module de la vitesse est quel que soit la position de l’électron.
On introduit , angle entre la tangente à la trajectoire et l’axe des et on rappelle que 

 et on suppose   . Qu’en déduire sur  ?
4) En déduire une équation différentielle en   . A quelle condition les électrons
recoupent l’axe des en  après être sortie de la zone de champ magnétique ?
5) On suppose que les électrons entrent et ressortent de la zone de champ magnétique à
la même distance . Montrer que le dispositif est équivalent à une lentille dont on donnera la
distance focale sous forme d’intégrale.
Indications :
1) Etude d’une diode de Flemming :
Pour relier  à  utiliser le théorème de l’énergie cinétique et pour relier  à
utiliser l’équation de Poisson ; relier l’intensité du courant à la densité volumique de charge
𝐴
𝑧𝑜
𝐵
 
𝐵
𝑧𝑜
𝑥
𝑣𝑜
𝑖
𝑧
électron
𝐵
 
𝑂
en faisant attention au signe. Résoudre l’équation différentielle, en déduire  puis
qui vaut , puis exprimer I en fonction de
2) Attention à la foudre :
1) Sur le sol, on suppose que le vecteur densité de courant est  ; étant un
vecteur de la base sphérique et  
. On suppose que l’intensité du courant se conserve
dans le sol sur une hémisphère ; 2) En déduire
, puis  dans le sol ; 3) Calculer la
différence de potentiels :  en fonction de la distance . On suppose  .
3) Champ magnétique dans un tokamak :
1) Faire une étude des symétries puis appliquer le théorème d’Ampère à un cercle centré sur
l’axe du tore et de rayon .
4) Sources d’un champ magnétique :
1) Retrouver le champ magnétique créé par une nappe surfacique de normale ; les sources
du champ sont trois distributions surfaciques en    et   ; 2) un électron dans un
champ magnétique uniforme a une vitesse de norme constante et fait un cercle de rayon
 
; discuter des cas    et  .
5) Milieu supraconducteur :
Décomposer le milieu en une superposition de nappes surfaciques d’épaisseur dx, parcourues
par une densité surfacique de courant 
et sommer les champs magnétiques
créés par ces nappes.
6) Moment magnétique de l’électron :
1) Il faut commencer par étudier le mouvement de l’électron autour du proton et trouver sa
période ; puis on peut écrire    ; 2) On décompose la sphère en une succession de
petites spires comprises entre et  , parcourues par un courant   ; calculer le
moment magnétique pour une petites spire, puis sommer.
7) Oscillations couplées de deux dipôles magnétiques
Paramétrer les positions des dipôles par et par. Le plus rapide est ensuite de déterminer
l'énergie potentielle du système . Introduire le moment d'inertie et la norme du
moment magnétique communs aux deux dipôles. Appliquer la loi du moment cinétique:
 
.
8) Diffusion dans une chambre à bulles :
L’énergie totale se conserve au cours d’une diffusion ; au cours d’une diffusion élastique, la
nature de la particule n’est pas modifiée et l’énergie cinétique totale se conserve ; exprimer la
vitesse des particules en fonction du champ magnétique, de la masse et du rayon de la
trajectoire ; de plus   
9) Spectromètre de masse :
1) Chercher le sens du champ électrique pouvant accélérer les ions positifs et en déduire les
valeurs des potentiels en et en ; appliquer la conservation de l’énergie mécanique pour
chaque ion pour en déduire les vitesses ; 2) le champ magnétique doit être perpendiculaire à la
vitesse des ions en ; la trajectoire est circulaire, calculer le rayon et en déduire la distance
nécessaire ; 3) le rapport des charges est le même que le rapport des ions ; une mole de
nucléon a une masse de .
10) Trois charges dans un champ magnétique uniforme :
1) Calculer le champ magnétique créé par le fil ; projeter la loi de la quantité de mouvement
pour une particule chargée sur  ; 2) exprimer l’énergie mécanique d’une particule chargée ;
en projetant la loi de la quantité de mouvement sur la direction orthoradiale, montrer que
; en déduire une pseudo énergie potentielle dont on étudiera les variations.
1 / 7 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !