Les gènes du mois

publicité
L
E
G
È
N
E
D
U
M
O
I
S
Les gènes du mois
● E. Raymond*
Les porteurs hétérozygotes d’une mutation du gène ATM
sont prédisposés au cancer et à la coronaropathie
La plupart des gènes de prédisposition au cancer (comme RB,
BRCA1, ou P53) ont une transmission autosomique dominante
et les individus porteurs hétérozygotes d’une telle mutation ont
un risque élevé de développer un cancer au cours de leur vie.
Le statut du porteur hétérozygote pour un gène à transmission
récessive est en revanche sujet à controverses.
L’ataxie-télangiectasie est une maladie autosomique récessive
se manifestant dès l’enfance par une ataxie cérébelleuse progressive, des télangiectasies oculo-cutanées, un déficit immunitaire, ainsi qu’une hypersensibilité aux radiations ionisantes.
Les patients homozygotes (avec deux allèles atteints) ont un
risque multiplié par 100 de développer un cancer, des leucémies aiguës et des lymphomes dans plus de 85 % des cas, et
leur décès survient à un âge moyen de 20 ans. Après l’âge de
20 ans, le développement de tumeurs solides devient prépondérant.
Le gène ATM localisé en 11q23.1 code pour une protéine ayant
une forte homologie avec la phosphatidylinositol 3’ kinase.
Elle est impliquée dans la transduction du signal provoqué par
un stress génotoxique comme les radiations ionisantes et interagit par des complexes protéiques avec les voies de signalisation impliquant P53 et BRCA1 notamment (1).
Les hétérozygotes porteurs d’une mutation du gène ATM sont
nombreux, puisqu’elle atteint 1,4 % à 2 % de la population
générale, mais la conséquence biologique (le phénotype) de
cette atteinte restait jusqu’à présent mal définie. Une étude de
cohorte américaine et canadienne a porté sur 405 grandsparents d’enfants atteints d’ataxie-télangiectasie (2). Le génotype des grands-parents a été déterminé par détection directe
de la mutation ou par détermination d’un haplotype (trois
microsatellites sur le chromosome 11q). Les 204 grandsparents porteurs hétérozygotes ont été comparés aux 201 nonporteurs d’une mutation du gène ATM.
Le décès survenait 8 ans plus tôt chez les hétérozygotes que
chez les apparentés non atteints (74 ans contre 82 ans pour les
hommes ; 86 ans contre 94 ans pour les femmes). Le risque
relatif de décès par cancer était de 2,6, et par coronaropathie de
deux. On a dénombré 35 décès par cancer pour les hétérozygotes, contre 16 pour les grands-parents sans mutation du gène
* IGR, 39, rue Camille-Desmoulins, 94805 Villejuif Cedex.
La Lettre du Cancérologue - volume X - n° 2 - mars/avril 2001
ATM. On a noté en particulier 8 décès par cancer du sein chez
les 111 femmes porteuses d’une mutation du gène ATM, alors
qu’aucun décès par cancer du sein n’est survenu parmi les
96 femmes qui n’en étaient pas porteuses.
Cette étude renforce l’hypothèse qu’une mutation du gène
ATM prédispose au cancer du sein, avec une augmentation du
risque estimée de 3 à 13 fois (3). Plusieurs séries ont montré
que 8 à 10 % des femmes atteintes d’un cancer du sein sont
hétérozygotes pour une mutation du gène ATM (4).
Une surveillance plus étroite des apparentés hétérozygotes
pour une mutation du gène ATM doit viser à prévenir la coronaropathie et à détecter précocement un cancer, en particulier
du sein. Cependant, la très grande taille du gène ATM et la
diversité des mutations s’étendant sur toute la longueur de ce
gène de 150 kb, ne permettent pas pour l’instant d’envisager
un screening de la population à la recherche de l’hétérozygotie
ATM.
P16 : gène de prédisposition au mélanome familial, au cancer du pancréas… et au cancer du sein
Les gènes de prédisposition au cancer sont souvent pléiotropes, c’est-à-dire qu’une mutation d’un gène de prédisposition ne confère pas seulement un risque plus élevé d’un type
de cancer, mais que des cancers de plusieurs organes différents
peuvent survenir au sein d’une même famille porteuse d’une
mutation. Ce phénomène était déjà connu pour les gènes
BRCA1, BRCA2 ou encore P53, il se vérifie maintenant pour le
gène P16.
Environ 10 % des cas de mélanome malin surviennent dans un
contexte familial. Les mutations du gène suppresseur de
tumeur CDKN2A situé en 9p21, qui code pour la protéine
P16INK4a, sont retrouvées jusque dans 44 % des cas de mélanome familial (5). La protéine P16 est un inhibiteur des
kinases dépendantes de la cycline D1 (CDK4 et CDK6) et
fonctionne comme un frein dans la régulation du cycle cellulaire. En l’absence de P16, les kinases CDK4 et 6 se lient à la
cycline D et entraînent la phosphorylation de la protéine RB
qui contrôle le passage G1/S du cycle cellulaire. Les individus
porteurs d’une mutation de CDKN2A (la nomenclature officielle pour P16) ont un risque élevé de développer un mélanome ou un cancer du pancréas. Une étude suédoise portant
sur 52 familles avec au moins deux cas de mélanome a identifié 10 familles avec une mutation du gène CDKN2A, dont
9 mutations identiques évocatrices d’un effet fondateur, la
mutation 113insArg (6). Dans ces familles, on a dénombré
huit cas de cancer du sein, conférant aux porteurs de cette
61
L
E
G
È
N
E
mutation de P16 un risque relatif de cancer du sein de 3,8.
D’autres études sont nécessaires avant d’ajouter P16 à la liste
des gènes favorisant le cancer du sein comme BRCA1, BRCA2
ou encore PTEN.
Un gène de prédisposition au cancer du testicule a été localisé sur le chromosome X
Finalement, peu de tumeurs sont tout à fait dénuées de composante familiale. Si cette constellation familiale est maintenant
connue pour les cancers du sein, de l’ovaire ou du côlon, il
n’en est pas de même pour les cancers du testicule.
Les tumeurs non séminomateuses du testicule affectent un
homme sur 500 et représentent la néoplasie la plus fréquente
de l’homme entre 15 et 40 ans dans les pays occidentaux.
L’histoire familiale de cancer du testicule est un facteur de
risque reconnu, conférant au frère d’un patient atteint, un
risque relatif de 8 à 10 de développer le même type de cancer,
alors que la filiation (apparentés père-fils) ne confère qu’un
risque relatif de 4 (7). Cette répartition du risque différent
parmi les apparentés du premier degré est évocatrice d’un gène
situé sur le chromosome X. Une étude anglaise a examiné
134 familles avec au moins deux cas de cancer du testicule (8).
Dans 87 de ces familles, les deux cas atteints étaient des frères.
Une analyse de liaison a permis d’établir un LOD-score statistiquement significatif pour l’ensemble de ces familles. Les
valeurs des LOD-scores étaient plus élevées, si étaient seules
retenues les familles avec des cancers testiculaires bilatéraux
ou une histoire de cryptorchidie. Le locus de ce gène a été
situé sur le bras long du chromosome X en position Xq27, à
62
D
U
M
O
I
S
proximité du gène FMR1di responsable du syndrome du X fragile. Si les patients avec un syndrome du X fragile n’ont pas
une incidence augmentée de cancer du testicule, il faut noter
que les patients avec un syndrome de Klinefelter (XXY) ont
un risque relatif de 67 de développer une tumeur germinale
médiastinale. Ce gène situé en Xq27, déjà baptisé TGCT1 doit
encore être séquencé et ne suffira pas à expliquer tous les cas
de cancers testiculaires familiaux.
■
R
É
F
É
R
E
N
C
E
S
B
I
B
L
I
O
G
R
A
P
H
I
Q
U
E
S
1. Rotman G, Shiloh Y. ATM : from gene to function. Hum Mol Genet 1998 ; 7 :
1555-63.
2. Su Y, Swift M. Mortality Rates among Carriers of Ataxia-Telangiectasia
Mutant Alleles. Ann Intern Med 2000 ; 133 : 770-8.
3. Janin N, Andrieu N, Ossian K et al. Breast cancer risk in ataxia telangiectasia (AT) heterozygotes : haplotype study in French AT families. Br J Cancer
1999 ; 80 : 1042-5.
4. Broeks A, Urbanus JH, Floore AN et al. ATM-heterozygous germline mutations contribute to breast-cancer susceptibility. Am J Hum Genet 2000 ; 66 :
494-500.
5. Soufir N, Avril MF, Chompret A et al. Prevalence of P16 and CDK4 germline mutations in 48 melanoma-prone families in France. The French Familial
Melanoma Study Group [published erratum appears in Hum Mol Genet 1998
May ; 7 (5) : 941]. Hum Mol. Genet 1998 ; 7 : 209-16.
6. Borg A, Sandberg T, Nilsson K. et al. High frequency of multiple melanomas
and breast and pancreas carcinomas in CDKN2A mutation-positive melanoma
families. J Natl Cancer Inst 2000 ; 92 : 1260-6.
7. Forman D, Oliver RT, Brett AR et al. Familial testicular cancer : a report of
the UK family register, estimation of risk and an HLA class 1 sib-pair analysis.
Br J Cancer 1992 ; 65 : 255-62.
8. Rapley EA, Crockford GP, Teare D et al. Localization to Xq27 of a susceptibility gene for testicular germ-cell tumours. Nat Genet 2000 ; 24 : 197-200.
La Lettre du Cancérologue - volume X - n° 2 - mars/avril 2001
Téléchargement