1
Dans cette partie ARCHITECTURE, nous voyons de quoi sont faits les ordinateurs à l’échelle
microscopique. Nous partons du transistor qui agit comme un interrupteur ultra-rapide et nous
construisons petit à petit des circuits qui permettent de faire des opérations logiques et des
calculs.
1)
Les fonctions booléennes
En s’aidant éventuellement de la console IDLE Python, remplir les tableaux suivants où a et b
sont des booléens 0 ou 1.
2)
Le circuit NON
A l’échelle la plus petite, un ordinateur est un assemblage de transistors. Un transistor est un
circuit électronique à trois fils appelés le drain, la source et la grille (figure 1). La résistance
entre le drain et la source est soit très petite, soit très grande selon la tension appliquée entre la
grille et la source.
Si on n’applique aucune tension à la grille, le transistor bloque le courant entre le drain et la source
et il est équivalent au schéma de la figure 2. La sortie est alors égale à la tension d’alimentation ( 5
V).
Si la tension appliquée à la grille est égale à 5 V alors le transistor laisse passer le courant entre le
drain et la source et la source se retrouve reliée au potentiel électrique 0V.
Ainsi le niveau de l’entrée A donne un niveau bas en sortie, et vice versa. En termes logiques, 0 est
transformé en 1 et 1 est transformé en 0.
a
b
a ET b
a
NON a
a
b
a OU b
a
b
NON(a ET b)
b
NON(a OU b)
PARTIE ARCHITECTURE
TP1 Les portes booléennes
2
On obtient la table de vérité de la fonction NON : Le symbole logique est :
3)
Les portes logiques de base
Etudier le circuit suivant et compléter sa table de vérité. Le symbole logique est
a
b
S
En déduire le nom de ce circuit.
Etudier le circuit suivant et compléter sa table de vérité. Le symbole logique est
En déduire le nom de ce circuit.
Etudier le circuit suivant et compléter sa table de vérité. Le symbole logique est
a
b
S
a
S
0
1
1
0
a
b
S
3
En déduire le nom de ce circuit.
4)
Associations de portes logiques
Quelle est la table de vérité du circuit ? Est-ce la table d’une fonction connue ?
La porte NON ET permet de réaliser n’importe quelle fonction booléenne :
Quelle est la table de vérité du circuit ? Est-ce la table d’une fonction connue ?
Quelle est la table de vérité du circuit ? Est-ce la table d’une fonction connue ?
5)
La fonction OU-exclusif
Le ou excusif a pour table de vérité :
Vérifier que le circuit suivant est bien celui de la fonction OU-exclusif :
a
b
S
a
a
S
a
b
S
a
b
S
0
0
0
0
1
1
1
0
1
1
1
0
4
6)
Comment additionner avec des portes logiques ?
Rappeler la table de vérité de l’addition de deux bits a et b avec une retenue :
1/ Pour S, quelle fonction logique reconnait-on ?
2/ Même question pour Cout la retenue.
On peut fabriquer un demi-additionneur :
Compléter le circuit suivant :
Pour réaliser un additionneur complet, il faut penser qu’une retenue peut être présente d’une
addition précédente. Compléter le tableau déjà vu dans le TP précédent :
Compléter le circuit ci-dessus afin de réaliser l’additionneur 1 bit
avec retenue. Il manque 2 portes logiques et des fils de connexion.
a
b
S
Cout
0
0
0
1
1
0
1
1
a
b
Cin
S
Cout
0
0
0
0
1
0
1
0
0
1
1
0
0
0
1
0
1
1
1
0
1
1
1
1
1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !