TD 4 de physique des plasmas
Mouvements collectifs - Echelles temporelles caractéristiques
M1 Physique fondamentale 2014-2015
On notera
ε
0
la permittivité diélectrique absolue du vide, e et m la charge et la masse de
l’électron.
Exercice 1 – Eclatement cylindrique coulombien et pulsation plasma
On considère un faisceau cylindrique infini d’électrons initialement au repos. A l’instant t = 0,
le rayon de ce cylindre est R et la densité d’électrons est homogène et vaut n
e
. Sous l’effet des
forces coulombiennes répulsives, ce faisceau a tendance à éclater radialement. On appelle
ξ(r,t) le déplacement radial à l’instant t des électrons situés dans le cylindre de rayon initial r.
On a donc à t = 0 :
(
)
00,r =ξ
et
(
)
0
t
t,r =
ξ
.
1.
Justifier pourquoi la force magnétique peut être négligée par la suite.
2.
Calculer le champ électrique E(r+ξ,t) à l’intérieur du faisceau en fonction de r et t.
3.
Appliquer le principe fondamental de la dynamique à un électron et établir l’équation
différentielle du 2
ème
ordre vérifiée par ξ(r,t).
4.
En déduire l’équation différentielle du 1
er
ordre vérifiée par u(r,t) = r + ξ(r,t).
5.
Montrer que :
( ) ( )
ξ
+
=ξω
r
0
p
x1ln
dx
,rt
Donner l’expression de ω
p
en fonction des grandeurs caractéristiques du faisceau.
6.
Quelle est la signification physique de t(R, R) ? En déduire celle de ω
p
.
Exercice 2 – Migration de charges dans un plasma collisionnel
Considérons un plasma sphérique constitué de protons, supposés infiniment lourds, donc au
repos, et d’électrons mobiles en interaction collisionnelle avec les protons. Cette sphère de
plasma est chargée négativement en raison d’un excès initial d’électrons par rapport aux
protons. A un instant initial t = 0, cette sphère est donc globalement chargée avec une densité
volumique de charge ρ
0
. Sous l’effet de la répulsion coulombienne et des collisions, cette
densité volumique de charges évolue en fonction du temps et nous la noterons ρ(t) à un
instant t. Cette densité volumique de charge crée un champ électrique
E
et ce champ met en
mouvement les électrons (les protons sont immobiles durant le processus) créant ainsi une
densité volumique de courant
J
. Compte tenu des collisions entre électrons et protons, le
courant électronique obéit à la loi d’Ohm
J
= σ
E
où σ est la conductivité électrique, supposée
homogène.
1.
Quelle est l’unité de σ ?
2.
A l’aide de l’équation de Maxwell-Gauss et du principe de conservation des charges,
établir l’équation différentielle du 1
er
ordre vérifiée par ρ. Exprimer ρ(t) en fonction
des données du problème.
3.
Quel est le temps caractéristique τ
M
(temps de Maxwell) de migration de l’excès de
charge électronique vers la surface de la sphère ionique ? En introduisant l’expression
de Lorentz de la conductivité : σ = Ne
2
/mν ν est la fréquence de collision entre
protons et électrons, exprimer τ
M
en fonction de ν et ω
p
. Commenter.
Exercice 3 – Oscillation d’une sphère de plasma
Considérons une sphère de rayon R constituée par un plasma neutre de densité ionique n
i
homogène et de densité électronique n
e
, homogène : n = n
i
= n
e
. Les ions sont donc des
protons. Sous l’effet d’une perturbation initiale, la composante électronique du plasma est
déplacée. Cette perturbation ne modifie pas la forme sphérique de la population électronique
et déplace juste le centre de la sphère électronique. Ainsi, on obtient deux sphères homogènes,
une sphère ionique, formée de protons, et une sphère électronique, dont les centres sont
séparés par une distance d telle que d << R. On notera
d
le vecteur décrivant ce déplacement.
1.
A l’aide du théorème de Gauss, calculer le champ électrique E dans le volume
commun aux deux sphères. On se limitera à un calcul sur l’axe du déplacement.
2.
A l’aide du principe fondamental de la dynamique, déduire l’équation différentielle du
2
ème
ordre vérifiée par
d
. Quelle est la pulsation caractéristique associée à ce type de
perturbation ? Commenter.
t > 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
d
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !