revue_ThomX_meca_Cav..

publicité
Optical cavity
Revue ThomX mécanique
(25/01/2011)
Yann Peinaud & Mickael Lacroix (LAL)
[email protected] & [email protected]
Optical cavity
IN2P3
Les deux infinis
Name (Lab)
Presentation title (Place, date)
1
Optical cavity
Summary

Synoptic & Constraints

Solutions

IN2P3
Les deux infinis

Motorized table, bumpers / Optical table

Vacuum chamber

Mirror adjustment system

Actuator capsule

Optical chamber

Dîpole chamber

X-ray output

Vacuum load compensation system

Positioning strategy
Not studied yet
Name (Lab)
Presentation title (Place, date)
2
Optical cavity
Synoptic and constraints

Synoptic

y
Spherical mirror 2
( θx, θy, z )
x
z
Flat mirror 2
( θx, θy, z )
Waist
Constraints

Micro positioning of the Waist (+/-10µm on X and Y)

Stability of the positioning

2100 mm
Spherical mirror 1
( θx, θy, z )
IN2P3
Les deux infinis
Flat mirror 1
( θx, θy, z )
Name (Lab)

“No vibration”

No misalignment (No load variation)
Vacuum

Low out-gasing materials

Baking at 150°C

Micro positioning of the mirrors ( θx, θy, z )

Lowest interaction angle

40mrad of Compton X-ray output

Lowest e- beam perturbation
Presentation title (Place, date)
3
Optical cavity
Motorized table, bumpers and optical table
Constraints:
y

Micro positioning of the Waist (+/-10µm on X and Y)

Stability of the positioning

x
“No vibration”
z
Bumpers
Y motion
X motion
3 feets with X&Y micro motions + bumpers between the 2 tables
(used by Mightylaser at KEK)
IN2P3
Les deux infinis
Name (Lab)
Presentation title (Place, date)
4
Optical cavity
Vacuum chamber
Constraints:

Ring dipoles
Vacuum

Low out-gasing materials

Baking at 150°C
Ring chambers
Optical chambers
IN2P3
Les deux infinis
Name (Lab)
Presentation title (Place, date)
5
Optical cavity
Vacuum chamber  Mirror adjustment system
Parameters
MightyLaser
Constraints:
ThomX
Max length between mirors (mm)
500
2100
Minimum incremental motion (µm)
0,3
0,1
1
0,1
Arm length (mm)
110
60
Laser spot precision on the furthest miror (µm)
1,36
3,5
Laser spot precision used on the furthest miror (µm)
4,55
3,5
Minimum incremental motion used (µm)

Vacuum

Low out-gasing materials

Baking at 150°C

Micro positioning of the mirrors ( θx, θy, z )

40mrad of Compton X-ray output
Vacuum prepared
actuators
θx, θy motion with a
cardan solution
(flexure hinges)
MightyLaser (R.Cizeron)
IN2P3
Les deux infinis
Z motion balls (2 on
« v » tracks and 1
on flat track)
Name (Lab)
ThomX
Presentation title (Place, date)
6
Optical cavity
Vacuum chamber  Actuator capsule
Constraints:
Spring


CF16 flanges
Micro-actuator
Vacuum

Low out-gasing materials

Baking at 150°C
Micro positioning of the mirrors ( θx, θy, z )
Baking tests are planned
Sub-C ceramic plug
IN2P3
Les deux infinis
Name (Lab)
Presentation title (Place, date)
7
Optical cavity
Vacuum chamber  Piezo
Constraints:


Vacuum

Low out-gasing materials

Baking at 150°C
Micro positioning of the mirrors ( θx, θy, z )
Not possible
High out gasing material
Is it really needed in ThomX?
Is the electron repetition frequency adjusted on the length of the optical cavity?
If it’s the case what will be the range?
Sub-C ceramic plug
IN2P3
Les deux infinis
Name (Lab)
Presentation title (Place, date)
8
Optical cavity
Vacuum chamber  Optical chamber
Constraints:

Stability of the positioning
No misalignment (No load variation)



Vacuum

Low out-gasing materials

Baking at 150°C
Micro positioning of the mirrors ( θx, θy, z )
Thick socket on 3 feets (with precise positioning)
Thick base (40mm) to minimize
deformations due to the vacuum
IN2P3
Les deux infinis
Name (Lab)
Presentation title (Place, date)
9
Optical cavity
Vacuum chamber  Dipole chamber
BPM
Constraints:

e-
Vacuum

Low out-gasing materials

Baking at 150°C

Lowest interaction angle

40mrad of Compton X-ray output

Lowest e- beam perturbation
Slits for laser and X-ray :
Pumping port
- R3 x 27mm
- R4.5 x 45mm
e-
40 mrad X-ray
IN2P3
Les deux infinis
Name (Lab)
Presentation title (Place, date)
10
Optical cavity
Vacuum chamber  X-ray output
Constraints:

Vacuum

Low out-gasing materials

Baking at 150°C

Lowest interaction angle

40mrad of Compton X-ray output
Tests are planned to place the
injection on the opposite side of the
X-ray
Cavity diagnostic
(CfF40 window)
IN2P3
Les deux infinis
40 mrad X-ray
(CF63 beryllium
window)
Laser injection (CF
40 window)
Name (Lab)
Presentation title (Place, date)
11
Optical cavity
Vacuum load compensation system
Constraints:

Bellow for dilatation
Stability of the positioning
No misalignment (No load variation)


Bellows for compensation
Vacuum


Baking at 150°C
Micro positioning of the mirrors ( θx, θy, z )
compensation system
pad
BPM support
(still under study)
IN2P3
Les deux infinis
Name (Lab)
Presentation title (Place, date)
12
Optical cavity
Positioning strategy
Positioning fingers
IN2P3
Les deux infinis
Name (Lab)
Presentation title (Place, date)
13
Optical cavity
Not studied yet

The full integration between cavity and ring

Accoustic isolation & thermalisation (Mightylaser baseline)

Cleanness conservation (Mightylaser baseline)
IN2P3
Les deux infinis
Name (Lab)
Presentation title (Place, date)
14
Optical cavity
• Back slides
IN2P3
Les deux infinis
Name (Lab)
Presentation title (Place, date)
15
Opticaloptique
Cavité
cavity
Intégration sur l’anneau

Propriétés :

Angle d’intéraction de 2°

Bon accès aux miroirs

Ne nécessite pas de place dans l’anneau
IN2P3
Les deux infinis
Name (Lab)
Presentation title (Place, date)
16
Optical cavity
Synoptique de la cavité optique 4 miroirs

Synoptic

Constraints
y

Waist micro transversal positioning (+/-10µm)

Micro positioning of the mirrors



θx, θy on each mirrors

Z on spherical mir
Miroir plan 2
( θx, θy, z )
Miroir sphérique 2
( θx, θy, z )
x
z
Waist
Stability of the positioning

“No vibration”

Mirrors alignment under air

Alignement

UHV

Materials

Atmosphere pressure

baking at 150°C

Miroir sphérique 1
( θx, θy, z )
Focalisation (taille du waist)

Miroir plan 1 
( θx, θy, z )
IN2P3
Name (Lab)
Z sphérique 1 et 2
Longueur de cavité (fréquence de
résonnance)

Les deux infinis
θx, θy pour chacun des miroirs
Z plan 1 et 2
Presentation title (Place, date)
17
Optical cavity
Intégration sur l’anneau
Dipôle
BPM
y
Vanne
x
z
Table optique
Chambre
miroirs
Chambre dîpole
Pompe
ionique
IN2P3
Les deux infinis
Soufflet :
- Isolation
- Mvt transverse (table X,Y)
- Mvt longitudinal (étuvage)
Name (Lab)
Table
motorisée
en X et Y
Presentation title (Place, date)
18
Optical cavity
Not studied yet

The full integration between cavity and ring

Accoustic isolation & thermalisation (Mightylaser baseline)

Cleanness conservation (Mightylaser baseline)
IN2P3
Les deux infinis
Name (Lab)
Presentation title (Place, date)
19
Téléchargement