1
Généralités sur les systèmes thermodynamiques
Plan :
1. Notions de base
a. Système thermodynamque
b. Grandeurs macroscopiques et microscopiques :
c. Equilibre thermodynamique
d. Pression
2. Température
a. Les échelles centésimales de température
b. Propriétés des gaz aux faibles pressions.
c. Température absolue
3. Gaz parfaits- gaz réels
a. Gaz parfaits
b. Gaz réels
La thermodynamique est l’étude des phénomènes thermiques en relation avec la dynamique. Les
systèmes étudiés, souvent des fluides (gaz ou liquide), comportent un nombre très élevé de
particules (atomes, molécules, ions).
Deux approches de la thermodynamique sont possibles :
Une approche microscopique statistique à partir des lois physiques appliquées aux
particules qui composent le système
Une approche macroscopique. Le système est alors défini par quelques
paramètres perceptibles à notre échelle tels que la pression, la température, le
volume.
1. Notions de base
a.
Système thermodynamique :
Un systèmes thermodynamique est un ensemble formé d’un très grand nombre de particules.
Tout ce qui n’appartient pas au système est extérieur au système au système.
Le système est ouvert s’il y a un transfert de matière entre le système et le milieu extérieur.
Le système est fers’il n’y a pas de transfert de matière, par contre il peut y avoir un
transfert d’énergie avec l’extérieur.
Le système est isolé s’il y a ni transfert de matière, ni transfert d’énergie entre le système et
l’extérieur.
b.
Grandeurs macroscopiques et microscopiques :
Une grandeur microscopique caractérise UNE particule alors qu’une grandeur macroscopique
caractérise un grand nombre de particules (le système étudié), une mesure macroscopique réalise
une moyenne de grandeurs microscopiques.
Les grandeurs macroscopiques, susceptibles d’être modifiées lors d’une transformation
quelconque d’un système, sont appelées
paramètres d’état du système
. Elles permettent de
décrire l’état d’un système.
Une grandeur macroscopique est une
grandeur extensive
si elle dépend de la quantité de matière
de ce système. Exemples : La masse , le volume , le nombre de moles, l’énergie…sont des
grandeurs extensives.
2
Une grandeur macroscopique est une
grandeur intensive
si elle ne dépend pas de la quantité de
matière de ce système. Exemples la pression, la température, la masse volumique, la
concentration….
c. Equilibre d’un thermodynamique :
Un système est dit en équilibre macroscopique lorsque les paramètres d’état n’évoluent plus au
cours du temps et qu’il n’existe aucun transfert de matière ou d’énergie.
Un système est en équilibre thermodynamique, il doit se trouver :
dans un équilibre mécanique : la résultante des forces exercées sur les parties mobiles du
système est nulle ;
dans équilibre thermique : la température de chaque partie du système est uniforme.
dans le cas d’un système chimique, il faut ajouter la condition d’équilibre chimique, avec la
composition uniforme.
La relation reliant les différents paramètres d’état d’un système en équilibre est appelée
« équation d’état » du système.
Si un système est décrit par la connaissance de deux variables d’état indépendantes: P et T
(pression et température par exemple) , on peut alors exprimer une troisième variable V (le
volume ) à l’aide des deux autres : l’équation d’état relie les variables P,V et T : f(P,V,T)=0.
L’équation d’état d’un gaz parfait est :
PV
=
nRT n
:
nombre de moles
d.
Pression :
On définit la pression PM en un point M comme la force exercée par unité de surface par le
fluide au contact de la paroi
dFM
=
PMdSM
=
PMdSMnext
PM
=
dFM
dSM
en Pascal =
Pa
=
Nm
2=
kgm
1
s
2
Fluide
Milieu 1
dS M
=
nextdS M
M
Force de pression exercée par le milieu 1 sur le milieu 2 :
dF
12=
PMdS
12=
PMdS n
12
PM
=
dF
12
dS
12
3
2.
Température
Les premiers thermomètres datent de Fahrenheit (1686-1736). Ils sont basés sur la principe de
l’équilibre thermique (ou principero de la thermodynamique).
Soit l’expérience suivante : une règle de cuivre « froide » est plongée dans un bain d’eau à
ébullition : on constate que les paramètres de la règle (par exemple sa longueur) varient en
fonction du temps puis se stabilisent. On postule qu’alors la règle et le bain d’eau sont à la même
température. : C’est le principe de l’équilibre thermique.
Deux corps en contact thermique prolongé se mettent « en équilibre thermique » cad sont « à la
même température ».
Deux corps en équilibre thermique avec un troisième sont aussi en équilibre thermique entre eux.
On peut alors grouper tous les objets « à la même température » en une classe d’équivalence
représentée par la température θ. Ceci définit la température θ, reste à la repérer ou à la
mesurer.
a.
Les échelles centésimales de température
On constate qu’un certains nombres de grandeurs (dites grandeurs thermométriques) dépendent
de la température notée ici θ.
La longueur d’une colonne de mercure liquide (thermomètre à mercure)
La longueur d’une colonne d’alcool liquide (thermomètre à alcool)
La résistance d’un fil électrique métallique (thermomètre à résistance)
La force électromotrice (fem) d’un thermocouple (thermomètre à thermocouple)
Soit g la grandeur thermométrique (par exemple la longueur de la colonne de mercure). On
définit la température en imposant la fonction g(θ).
Les 1er manipulateurs imposent , bien sur la fonction la plus simple : une fonction affine pour
g
(
θ
)=
a
+
bθ
. Il suffit de deux points parfaitement reproductibles pour déterminer a et b :
Eau liquide- eau solide en équilibre pour une pression P0 on pose θ=0 g(0)=X0=a
Eau liquide-eau vapeur en équilibre pour une pression P0 on pose
θ=100 g(100)=X100=a+100b
On définit alors une échelle affine centésimale :
g
(
θ
)=
g
(0)+
g
(100)
g
(0)
100
θ
=
g
(0)(1+
αθ
)
avec α
=
g
(100)
g
(0)
100
g
(0)
Le problème rencontré : deux grandeurs thermométriques différentes g et g’ (par exemple le
thermomètre à mercure et le thermomètre à alcool) conduisent expérimentalement à des
températures, pour le même bain, θ et θ’ légèrement différentes sauf pour θ=0° et θ=100° où
tous les thermomètres par construction coïncident. Avec l’échelle centésimale de température
définie précédemment, la température est simplement repérée , on ne fait pas une mesure de la
température.
On cherche donc à définir une échelle de température qui ne dépend pas du thermomètre utilisé.
b. Propriétés des gaz aux faibles pressions.
h
Enceinte
thermostatée
Gaz de volume V
vide
mercure
4
Il a été mis en évidence que pour des pressions très faibles, de l’ordre du pascal,
tous les gaz ont
des propriétés simples et identiques.
On étudie l’évolution de la pression et du volume d’un gaz grâce au dispositif ci-dessus. La
pression est proportionnelle à la hauteur h :
P
=
µ
(
Hg
)
g h
; µHg : masse volumique du mercure ;
g : l’accélération de la pesanteur et h la hauteur mesurée.
Si on étudie l’évolution du produit PV en fonction de la pression P de plusieurs gaz avec le
dispositif ci dessus pour une température θ fixée,on obtient la figure ci-dessous et on peut
extrapoler les isothermes PV=f(P) pour P qui tend vers 0, on obtient une valeur limite (PV)θ. Cette
valeur limite, pour une mole de gaz, ne dépend pas de la nature du gaz.
On dispose donc d’une grandeur physique
(lim
p
0
PV
)
qui ne dépend que de la température
quel que soit le gaz considéré.
c. Température absolue
On a donc, aux faibles pressions, pour une masse m fixée (quelconque) d’un gaz donné, le produit
PV ne dépend que de la température et est proportionnel au nombre de molécules donc, pour deux
températures θ1 et θ2 , on peut écrire :
(
PV
)
θ
1
(
PV
)
θ
2
=
f
(
θ
1;
θ
2)
. Ce rapport ne dépend que des
températures. On définit alors les températures absolues T1 et T2 correspondantes aux
températures θ1 et θ2 par ce rapport :
(
PV
)
θ
1
(
PV
)
θ
2
=
f
(
θ
1;
θ
2)=
T
1
T
2
T : température absolue
T
=(
PV
)
θ
(
PV
)
θR
TR
TR la température de référence : elle est définie pour le point triple de l’eau (coexistence des trois
phases de l’eau : liquide, solide et vapeur) : on pose TR= 273,16 K (K :Kelvin) car ce choix permet de
trouver T0=273,15 K pour θ=0 et T100=375,15 K pour θ=100, soit un écart de 100 unités comme dans
les échelles centésimales. La température absolue est une grandeur mesurable, directement
proportionnelle à une grandeur physique (le produit PV aux pressions faibles) et on a :
Température absolue
T
=273,16 (
PV
)
T
(
PV
)273,16
en Kelvin
Gaz A
Gaz B
Gaz C
P
PV
(PV)θ
Pour θ fixée
5
3. Gaz parfaits- gaz réels
a. Gaz parfaits
Un gaz parfait est un gaz dont les variables P (pression) ; V (volume) ; T (température) et n (nombre
de moles) sont reliés par :
PV
=
nRT
avec R : constante des gaz parfait;
R
=8,314
JK
1
mol
1
. Les différentes
grandeurs sont exprimées dans les unités du système international : P en Pascal, V en mètre cube, T
en Kelvin et n en mole.
La masse volumique :
ρ
=
m
V
=
PM
RT
avec M la masse molaire du gaz parfait
Le modèle du gaz parfait est une approximation supposant qu’il n’y a aucune interaction entre les
particules du gaz. On utilise ce modèle car il donne des résultats proches de la réalité lorsque la
pression n’est pas trop élevée.
Mélange idéal de gaz parfaits
: un mélange de gaz parfaits (mélange idéal) se comporte encore
comme un gaz parfait.
n
=
ni
i
PV
T
=
Pi
Vi
Ti
i
Densité
: La densité d’un gaz parfait G par rapport à un gaz parfait de référence Ga (l’air) est
donnée par :
d
=masse d’un certain volume V de (G)
masse du même volume V de (Ga)
dans le condition de température et de pression T, P
d
=
M
Ma
=
M
29
M : masse molaire du gaz G;
Ma
=29
gmol
1: masse molaire du gaz Ga : air
b. Ecart au gaz parfait : gazels
Lorsque les interactions entre les particules du gaz ne sont plus négligeables, le modèle du gaz
parfait n’est plus satisfaisant. Van der Waals a proposé une autre équation d’état qui permet de
relier les grandeurs P, V, T et n : c’est l’équation de Van der Waals :
(
P
+
n
2
a
V
2)(
V
nb
)=
nRT
avec a et b des constantes positives
Coefficients thermoélastiques :
Ce sont des coefficients accessibles à l’expérience et qui permettent d’établir l’équation d’état.
Coefficient de compressibilité isotherme :
χT
=1
V
(
δV
δP
)
T
Coefficient de dilatation isobare:
α
=1
V
(
δV
δT
)
P
Coefficient de compression isochore:
β
=1
P
(
δP
δT
)
V
Lors de petites variations de P, T ou V, on peut assimiler les dérivées aux rapports des variations.
Ainsi lors d’une petite augmentation de pression dP à température constante, la variation relative de
volume est :
dV
V
=
χTdP
.
1 / 6 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !