Le champ magnétique
Exercice 1
On place un fil de cuivre vertical en face du pôle nord
d'une boussole horizontale orientée dans le champ
magnétique terrestre. Lorsqu'on fait circuler un courant
d'intensité 1,5 A dans le fil, on constate que la boussole
est déviée d'un angle = 45 ° par rapport à sa position
initiale.
1. Représenter la composante du champ magnétique
terrestre
2. Quelle est l'allure des lignes de champ magnétique créées par le courant électrique traversant le
fil. Représenter le champ magnétique créé par le courant électrique au point M où se trouve la
boussole. En déduire le sens du courant électrique dans le fil.
3. Quelle est l'expression vectorielle du champ magnétique résultant au point M ?
4. En admettant que Bh= 20 0T, déterminer la valeur du champ créé par le courant au point M.
5. On considère que le champ magnétique créé par le courant est proportionnel à l'intensité du
courant électrique. Déterminer l'orientation que prendra la boussole en M si on fait passer un
courant d'intensité 5 A dans le fil.
Exercice 2
Deux rails conducteurs rectilignes sont disposés horizontalement comme indiqué sur la figure. Ils sont
distants de L=10 cm. Une tige de cuivre de masse m=20 g est libre de se déplacer sur ces deux rails et
assure le contact électrique. L'ensemble est placé à l'intérieur d'un aimant en U qui crée un champ
magnétique uniforme B vertical et de valeur B=100 mT.
1. Si la tige est parcourue par un courant I, elle se déplace de la gauche vers la droite. Représenter
et nommer la force responsable de ce déplacement.
2. Indiquer le sens du courant sur le schéma puis en déduire le sens du champ magnétique dans
l'aimant.
3. Calculer la valeur de la force F lorsque I=2,00 A.
4. Al'instant t=0, la tige est placée à l'extrémité gauche des rails et le circuit est fermé. Faire
l'inventaire des forces agissant sur la tige et les représenter sur un schéma. Les forces de
frottements seront notées f.
5. On s'intéresse à la phase d'accélération pendant laquelle la tige parcourt 2,0 cm de rail. La force
F=0,02 N et on peut négliger les frottements.Calculer le travail de chacune des forces pendant
cette phase.
6. Quelle est la variation d'énergie cinétique pendant cette phase ?
7. En déduire la vitesse de la tige à la fin de cette phase d'accélération.
8. que vaut la variation d'énergie potentielle de pesanteur lors de cette accélération ?
9. Après avoir accéléré, on ne peut plus négliger les force de frottements et la tige possède alors
une vitesse constante. En déduire la valeur de la force f de frottements.
Exercice 3
Deux fils de cuivre verticaux sont placés symétriquement de chaque coté d'une boussole horizontale.
En l'absence de courant dans les fils la boussole est orientée dans le champ magnétique terestre dont la
composante horizontale est B0= 2 10-5 T ( figure 1 : vue de dessus).
1. Représenter le vecteur champ magnétique au point M où se trouve la boussole en l'absence de
courant.
2. On fait circuler dans le fil de gauche un courant I= 5 A. La boussole dévie de 50°.
- Déterminer le sens et la direction du champ crée par le courant au point M.
- En déduire le sens du courant dans le conducteur.
-Quelle est la norme du champ crée par le courant.
3. Déterminer l'orientation prise par la boussole dans chacun des cas suivant :
- On fait passer dans le fil B ( à droite) un courant de 5A drigé vers le haut. I=0 dans le fil de
gauche ( fil A)
-On fait passer dans chaque fil un courant de même intensité et de même sens.
-On fait passer dans les fils des courants de même intensité mais de sens contraire.
Exercice 4
Un solénoïde S1de longueur L= 0,5 m est alimenté par un courant continu d'intensité I= 3A.
1. Représenter le solénoïde sur un schéma et tracer quelques lignes de champ. Indiquer le sens du
courant et l'orientation des lignes de champ.
- La valeur du champ à l'intérieur de la bobine longue est 4,5 mT. Quel est le nombre de spires ?
2. On place S1àl'intérieur d'un second solénoïde de même longueur, de même exe et alimenté par un
courant de même intensité. Le sens du champ à l'intérieur de S1 est le même que précédemment,
mais sa valeur n'est plus que 1,5 mT.
-Quelle sont les caractéristiques du champ crée par S2?
-Combien S2comporte t-il de spires ?
-Quelle sera la valeur du champ dans S1si on inverse le sens du courant dans S2?
Exercice 5
Une boussole est placée en O au centre d'un solénoïde S. En l'absence de courant, la boussole prend une
direction perpendiculaire à l'axe horizontal du solénoïde.
Le solénoïde est placé dans un circuit série comprenant un générateur de tension continue, un rhéostat
et un interrupteur K.
On ferme l'interrupteur K, le solénoïde
est parcouru par un courant constant
d'intensité I= 43,0 mA.
La boussole dévie d'un angle =
82,4°.
µ0= 4 10-7 SI ; L= 42,0 cm ; N= 1400 spires.
1) Calculer la valeur BO(en µT) du champ magnétique crée par le solénoïde au point O.
2) En déduire la valeur BHde la composante horizontale du champ magnétique terrestre.
On place le rhéostat suivant l'axe du solénoïde.
L'extrémité du rhéostat est située à la distance D du point O. Le champ BRcrée par le rhéostat a même
direction et le même sens que BOcrée par le solénoïde.
La boussole dévie d'un angle 1= 83,9 ° lorsque le circuit est parcouru par le même courant I= 43,0
mA.
3) Etablir l'expression de tan 1en fonction de BO, BHet BR.
On place le rhéostat perpendiculairement à l'axe du solénoïde. L'extrémité du rhéostat est toujours
située à la distance D de O.
Le champ BRcrée par le rhéostat a même direction et le même sens que BHcréé par la terre.
La boussole dévie d'un angle 2= 82,1° lorsque le circuit est parcouru par le même courant I= 43,0
mA.
4) Etablir l'expression de tan 2en fonction de BO, BHet BR.
5) Etablir l'expression de BH.Calculer BH.
1 / 3 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !