1
MP*1-2016/2017
DS3
Problème 1 :
Coup de foudre
Le processus de formation des nuages dans l’atmosphère suit un ensemble complexe
d’étapes dont la connaissance de base est la météorologie. Le cumulonimbus est le stade
ultime du nuage formé dans un courant d’air chaud ascendant en contact avec un air froid et
sec. Son profil est en forme d’enclume, dont le sommet atteint le haut de la troposphère, et sa
taille colossale sont caractéristiques.. et annonciateurs d’un orage imminent. On se propose de
modéliser la répartition des charges électriques dans le nuage et de comprendre l’apparition de
la foudre.
Les mécanismes de séparation des charges électriques au sein du nuage ne sont pas
encore parfaitement compris mais on constate généralement l’apparition de charges négatives
à la base du nuage et de charges positives au sommet. Dans certain cas, il peut même exister
plusieurs zones chargées négativement ou positivement alternativement. La base chargée du
nuage fait alors apparaître, par influence et ionisation de l’air, des charges positives dans
l’atmosphère, au voisinage du sol. Des mesures effectuées par ballon-sonde permettent de
déterminer la valeur de la composante verticale du champ électrostatique dans l’atmosphère :
environ   à  et jusqu’à   de valeur maximale à l’intérieur du
nuage.
On considère un nuage typique situé entre les altitudes   et 
(hauteur de la troposphère), de hauteur     et de section horizontale
 . Au niveau du sol, les charges positives se répartissent sur une épaisseur  
On rappelle la permittivité diélectrique du vide :   .
Dans la modélisation proposée, on néglige tout effet de bord et on suppose donc que
les grandeurs étudiées ne dépendent que de l’altitude , comme indiquée sur le schéma ci-
après.
2
Les charges positives près du sol sont réparties avec la densité volumique du charge uniforme
. Le champ électrique est supposé nul en  . A l’intérieur du nuage, on considère
simplement que la densité volumique de charge  varie linéairement, de la valeur
maximale   en    à la valeur opposée  en   .
1) Montrer qu’en tout point de l’espace, le champ électrostatique peut se mettre
sous la forme
 .
2) Déterminer le champ  dans la zone chargée      au niveau du sol. En
déduire la valeur numérique de la densité volumique de charge , ainsi que la charge totale
 existant dans cette zone.
3) Montrer que le champ électrostatique dans la zone      est uniforme et
donner sa valeur.
4) Etablir l’équation de la densité volumique de charge dans le nuage.
5) En utilisant l’équation locale de Maxwell-Gauss, déterminer le champ  dans le
nuage.
6) Représenter l’allure de  en fonction de .
7) terminer la valeur de , ainsi que les charges totales   et  portées
respectivement par les moitiés inférieure et supérieure du nuage. Commenter.
8) Exprimer le potentiel électrostatique  entre le sol et le nuage. On prendra
    . En déduire la différence de potentiels entre le sol et la base du nuage.
La foudre est une charge électrique entre le nuage et le sol permettant de neutraliser
les charges accumulées. Lorsque le champ électrostatique atteint localement la valeur de
  (pour l’air humide) - appelé champ disruptif- l’air est ionisé et un courant
électrique devient possible dans l’air devenu conducteur.
9) Comparer la valeur du champ électrostatique et la valeur du champ disruptif dans
l’air. Commenter.
On constate que la foudre tombe préférentiellement sur des objets pointus, comme les
arbres, les clochers et les paratonnerres. Pour illustrer cet effet de pointe, on propose la
3
modélisation suivante : un objet pointu situé à l’altitude est modélisé par une petite sphère
de rayon , de charge et portée au potentiel  On ne considère ici que l’action de la
sphère sur son environnement immédiat. Soit un point situé à la distance  du centre
de la sphère.
10) Rappeler l’expression du champ électrostatique
et du potentiel électrostatique
créés en par la sphère chargée. En déduire la relation entre la norme du champ
électrostatique créé au voisinage immédiat de la sphère et le potentiel  de celle-ci.
11) Déterminer le rayon de la sphère permettant à l’air d’être ionisé à sa surface. Faire
l’application numérique pour    et . Commenter.
Lorsque la foudre tombe, la décharge électrique ne dure que quelques centaines de
microsecondes et libère une énorme quantité d’énergie sous forme thermique et sonore dans
l’atmosphère.
12) Evaluer l’intensité du courant électrique de la décharge.
13) Déduire des résultats précédents l’énergie libérée par la foudre et l’ordre de
grandeur de l’augmentation de température de l’air à son voisinage. (on rappelle la capacité
thermique molaire à pression constante d’un gaz parfait diatomique :  
)
Problème 2 :
Mines- MP-2015- Extrait
Nature de la gravitation
4
5
1 / 7 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !