0∈ {0}
x∈ {0}x= 0 −x= 0 ∈ {0}
x∈ {0}y∈ {0}x= 0 y= 0 x+y∈ {0}
{0}
0∈Q
x∈Qa∈Zb∈N∗x=a/b
−x=−a
b,−a∈Z, b ∈N∗,
−x∈Q
x∈Qy∈Qa∈Zb∈N∗x=a/b a0∈Z
b0∈N∗y=a0/b0
x+y=a
b+a0
b0=ab0+a0b
bb0ab0+a0b∈Z, bb0∈N∗,
x+y∈Q
Q
3∈N−3/∈N N
3/4∈]−1,1[ 3/4 + 3/4 = 6/4 = 3/2/∈]−1,1[ ] −1,1[
G={0} ⇒ G∩]0,∞[= ∅inf G∩]0,∞[
G=Z⇒G∩]0,∞[= {1,2,3,4,5, ....}inf G∩]0,∞[= 1
G=Q⇒G∩]0,∞[= {a/b :a∈N, b ∈N∗}inf G∩]0,∞[= 0 2.b).
G=R⇒G∩]0,∞[=]0,∞[ inf G∩]0,∞[= 0
G=rZ⇒G∩]0,∞[= {r, 2r, 3r, 4r, ...}inf G∩]0,∞[= r
G
inf G∩]0,∞[= 0 >0
R
R
r≥0rZ={rn :n∈Z}
0 = r.0∈rZ
x∈rZn∈Zx=rn −x=r.(−n)−n∈Z
−x∈rZ
x∈rZy∈rZn∈Zx=rn m ∈Zy=rm
x+y=r(n+m)n+m∈Zx+y∈rZ
rZ
r G∩]0,∞[r > 0
r∈G
]0,1[ G]r, 2r[
y∈G y ∈]r, 2r[
G]0, r[
0, r, 2r
y > r G∩]0,∞[