Thermodynamique Application aux réactions chimiques

publicité
Premier principe de la thermodynamique : applications à la chimie
Enthalpie libre et potentiel chimique
Changement d’état du corps pur
Second principe de la thermodynamique : applications à la chimie
Changement d’état des alliages métalliques
2014-2015
Thermodynamique
Application aux réactions chimiques
Jérôme Creuze
SP2M/ICMMO
Bât. 410 - 3e étage
01 69 15 48 18
[email protected]
Thermodynamique chimique
Premier principe de la thermodynamique : applications à la chimie
Enthalpie libre et potentiel chimique
Changement d’état du corps pur
Second principe de la thermodynamique : applications à la chimie
Changement d’état des alliages métalliques
Définitions
Enthalpie de formation et de réaction
Enthalpie de réaction
Énergie, enthalpie de liaison
Enthalpie réticulaire
Variation de l’enthalpie de réaction avec la température
Température de flamme et température d’explosion
1. PREMIER PRINCIPE DE LA
THERMODYNAMIQUE :
APPLICATIONS À LA CHIMIE
Thermodynamique chimique
Premier principe de la thermodynamique : applications à la chimie
Enthalpie libre et potentiel chimique
Changement d’état du corps pur
Second principe de la thermodynamique : applications à la chimie
Changement d’état des alliages métalliques
Définitions
Enthalpie de formation et de réaction
Enthalpie de réaction
Énergie, enthalpie de liaison
Enthalpie réticulaire
Variation de l’enthalpie de réaction avec la température
Température de flamme et température d’explosion
Étude de la chaleur mise en jeu lors de réactions chimiques... mais pourquoi ? ? ?
Cela permet d’indiquer
si une réaction est possible ou non (endothermique ≈ difficile à réaliser) ;
la quantité d’énergie dont on dispose lors d’une réaction exothermique ;
la quantité d’énergie à fournir pour une réaction endothermique.
Thermodynamique chimique
Premier principe de la thermodynamique : applications à la chimie
Enthalpie libre et potentiel chimique
Changement d’état du corps pur
Second principe de la thermodynamique : applications à la chimie
Changement d’état des alliages métalliques
Définitions
Enthalpie de formation et de réaction
Enthalpie de réaction
Énergie, enthalpie de liaison
Enthalpie réticulaire
Variation de l’enthalpie de réaction avec la température
Température de flamme et température d’explosion
Soit X une fonction d’état extensive dépendant de T , P et ni (quantité de matière des
constituants du système, i ∈ [1, N]), notée X (T , P, ni ).La grandeur
molaire partielle
par rapport au constituant i est alors donnée par Xmi =
∂X (T ,P,ni )
∂ni
T ,P,nj6=i
.
X.mol−1
Son unité est le «
». Toute
fonction d’état extensive X (T , P, ni ) vérifie la
P
relation d’Euler : X (T , P, ni ) = i Xmi ni .
On dit qu’il y a transformation chimique lorsqu’il y a changement des quantités de
matière de certains constituants de S, en dehors de tout échange avec ME.
Lorsqu’il y a une seule réaction chimique dans S fermé, le bilan de matière (ensemble
de tous les ni ) ne dépend que d’une seule grandeur, appelée avancement de la réaction,
exprimée en moles et notée ξ. On écrira toujours l’équation chimique de telle sorte que
la réaction évolue de gauche à droite. Ainsi, ξ est toujours croissant et ξmax est obtenu
par épuisement du réactif en défaut (on ne l’atteind que si la réaction est totale). Enfin,
pour tout constituant Ai , de nombre stœchiométrique ν¯i , on a ni = ni,0 + ν¯i ξ.
Thermodynamique chimique
Premier principe de la thermodynamique : applications à la chimie
Enthalpie libre et potentiel chimique
Changement d’état du corps pur
Second principe de la thermodynamique : applications à la chimie
Changement d’état des alliages métalliques
Définitions
Enthalpie de formation et de réaction
Enthalpie de réaction
Énergie, enthalpie de liaison
Enthalpie réticulaire
Variation de l’enthalpie de réaction avec la température
Température de flamme et température d’explosion
grandeurs de réaction
Soit X (T , P, ni ) une fonction d’état extensive de S. Au cours d’une réaction thermodynamique élémentaire, on a :
P ∂X ∂X
dni .
dX = ∂T
dT + ∂X
dP + i ∂n
∂P
P,ni
T ,ni
i
T ,P,nj6=i
P
P ∂X ∂X
dni = i ν¯i ∂n
dξ = ∂X
dξ,
Or, dni = ν¯i dξ et donc i ∂n
∂ξ T ,P
i T ,P,n
i T ,P,n
j6=i
j6=i
P
où ∂X
= i ν¯i Xmi est appelée grandeur de réaction et est notée ∆r X . Comme X
∂ξ
T ,P
dépend des coefficients stœchiométriques, elle est donc associée à une équation chimique
donnée.
Remarques :
∆r X est une grandeur intensive.
R
À T et P constants, dX = ∆r X dξ et donc ∆X = ξξ12 ∆r X (T , P, ξ)dξ,
autrement dit ∆r X est la valeur de ∆X à T et P constants par mole
d’avancement de la réaction.
Pour un système idéal, les Xmi sont indépendants de la composition du réacteur,
c.-à-d. de ξ, donc ∆r X aussi ! → ∆X = ∆r X (ξF − ξI ).
Thermodynamique chimique
Premier principe de la thermodynamique : applications à la chimie
Enthalpie libre et potentiel chimique
Changement d’état du corps pur
Second principe de la thermodynamique : applications à la chimie
Changement d’état des alliages métalliques
Définitions
Enthalpie de formation et de réaction
Enthalpie de réaction
Énergie, enthalpie de liaison
Enthalpie réticulaire
Variation de l’enthalpie de réaction avec la température
Température de flamme et température d’explosion
enthalpie de réaction
On définit finalement l’enthalpie de réaction comme :
P
∆r H = i ν¯i Hmi = ∂H
∂ξ
T ,P
.
R
Lorsque la transformation est isobare, on a alors ∆H = Qp = ξξ12 ∆r H(T , P, ξ)dξ.
Ainsi, lorsque ∆r H(T , P, ξ) ≈ cste lors de la réaction, on alors Qp = ∆H = ∆r H (ξF − ξI ).
Remarques :
si ∆r H > 0, alors Qp > 0 et la réaction est endothermique ;
si ∆r H < 0, alors Qp < 0 et la réaction est exothermique ;
si ∆r H = 0, alors Qp = 0 et la réaction est athermique.
Thermodynamique chimique
Premier principe de la thermodynamique : applications à la chimie
Enthalpie libre et potentiel chimique
Changement d’état du corps pur
Second principe de la thermodynamique : applications à la chimie
Changement d’état des alliages métalliques
Définitions
Enthalpie de formation et de réaction
Enthalpie de réaction
Énergie, enthalpie de liaison
Enthalpie réticulaire
Variation de l’enthalpie de réaction avec la température
Température de flamme et température d’explosion
Etat standard et grandeurs standard
Comme nous l’avons vu, les grandeurs de réaction sont définies pour une température
et une pression données. Il est nécessaire de choisir un état de référence pour toutes les
réactions. On le nomme état standard et c’est l’état physique le plus stable du corps à
la température considérée et à la pression de P 0 = 1 bar.
Dans le cas d’un élément en solution, son état standard est celui de la solution
infiniment diluée ayant les propriétés d’une solution hypothétique de concentration
c 0 = 1 mol.L−1 .
Une réaction standard est donc une réaction isotherme à la température T et isobare à la pression standard P 0 où tous les constituants sont dans leur état standard.
Les grandeurs de réaction
associées
sont appelées grandeurs standard et sont notées
P
0 = ∂X 0
∆r X 0 (= i ν¯i Xmi
).
∂ξ
T ,P
En toute rigueur, la température doit être précisée. Cependant, un abus de langage
fait que l’état standard correspond à P = 1 bar et à T = 298 K, dite « température
ambiante ».
Thermodynamique chimique
Premier principe de la thermodynamique : applications à la chimie
Enthalpie libre et potentiel chimique
Changement d’état du corps pur
Second principe de la thermodynamique : applications à la chimie
Changement d’état des alliages métalliques
Définitions
Enthalpie de formation et de réaction
Enthalpie de réaction
Énergie, enthalpie de liaison
Enthalpie réticulaire
Variation de l’enthalpie de réaction avec la température
Température de flamme et température d’explosion
Le super quizz de l’état standard des corps purs
À P = 1 bar et à T = 298 K, qui est gazeux/liquide/solide ?
Thermodynamique chimique
Premier principe de la thermodynamique : applications à la chimie
Enthalpie libre et potentiel chimique
Changement d’état du corps pur
Second principe de la thermodynamique : applications à la chimie
Changement d’état des alliages métalliques
Définitions
Enthalpie de formation et de réaction
Enthalpie de réaction
Énergie, enthalpie de liaison
Enthalpie réticulaire
Variation de l’enthalpie de réaction avec la température
Température de flamme et température d’explosion
Le super quizz de l’état standard des corps purs... la solution !
les gaz
H2 , O2 , N2 , F2 , Cl2 ... mais He, Ne, Ar, Kr, Xe, Rn
Thermodynamique chimique
Premier principe de la thermodynamique : applications à la chimie
Enthalpie libre et potentiel chimique
Changement d’état du corps pur
Second principe de la thermodynamique : applications à la chimie
Changement d’état des alliages métalliques
Définitions
Enthalpie de formation et de réaction
Enthalpie de réaction
Énergie, enthalpie de liaison
Enthalpie réticulaire
Variation de l’enthalpie de réaction avec la température
Température de flamme et température d’explosion
Le super quizz de l’état standard des corps purs... la solution !
les liquides
Br2 ... mais Hg
Thermodynamique chimique
Premier principe de la thermodynamique : applications à la chimie
Enthalpie libre et potentiel chimique
Changement d’état du corps pur
Second principe de la thermodynamique : applications à la chimie
Changement d’état des alliages métalliques
Définitions
Enthalpie de formation et de réaction
Enthalpie de réaction
Énergie, enthalpie de liaison
Enthalpie réticulaire
Variation de l’enthalpie de réaction avec la température
Température de flamme et température d’explosion
Le super quizz de l’état standard des corps purs... la solution !
les solides
C graphite, P4 , Si diamant, Cu, ...
Thermodynamique chimique
Premier principe de la thermodynamique : applications à la chimie
Enthalpie libre et potentiel chimique
Changement d’état du corps pur
Second principe de la thermodynamique : applications à la chimie
Changement d’état des alliages métalliques
Définitions
Enthalpie de formation et de réaction
Enthalpie de réaction
Énergie, enthalpie de liaison
Enthalpie réticulaire
Variation de l’enthalpie de réaction avec la température
Température de flamme et température d’explosion
Chaleur de réaction
Enfin, on appelle chaleur de réaction la variation d’enthalpie lors d’une réaction. À l’état
standard, on alors Q = ∆H = ∆r H 0 (ξF − ξI ).
Exemple : H2gaz + Cl2gaz → 2HClgaz
À T = 298 K, ∆r H 0 = −185 kJ.mol−1 . Si initialement nH2 = 3 mol et nCl2 = 5 mol
et qu’on suppose la réaction totale, on a alors ξF − ξI = 3 mol et Q = −555 kJ.mol−1 .
Thermodynamique chimique
Premier principe de la thermodynamique : applications à la chimie
Enthalpie libre et potentiel chimique
Changement d’état du corps pur
Second principe de la thermodynamique : applications à la chimie
Changement d’état des alliages métalliques
Définitions
Enthalpie de formation et de réaction
Enthalpie de réaction
Énergie, enthalpie de liaison
Enthalpie réticulaire
Variation de l’enthalpie de réaction avec la température
Température de flamme et température d’explosion
Enthalpie de formation
L’enthalpie de formation est l’enthalpie accompagnant la formation à P = cste d’un
composé à partir des corps purs constitutifs pris à l’état le plus stable ou ils existent à
la pression et à la température où la réaction est considérée. Elle se note ∆f H.
Dans les conditions standard, l’enthalpie de cette réaction est tout simplement l’enthalpie standard de formation de ce composé. Elle se note alors ∆f H 0 .
Cgraphite + O2 gaz −−→ CO2 gaz à T = 298 K avec C graphite et PO2 = PCO2 = 1 bar
w ∆f H 0 = −395 kJ.mol−1 ; la réaction est donc exothermique.
w le composé est dans un état plus stable que les corps purs.
2 Cgraphite + 2 H2 gaz −−→ C2 H4 gaz à T = 298 K avec C graphite et PH2 = PC2 H4 =
1 bar
w ∆f H 0 = +52 kJ.mol−1 ; la réaction est donc endothermique.
w le composé est dans un état moins stable que les corps purs.
L’enthalpie standard de formation d’un corps pur sous sa forme la plus stable est nulle
Thermodynamique chimique
Premier principe de la thermodynamique : applications à la chimie
Enthalpie libre et potentiel chimique
Changement d’état du corps pur
Second principe de la thermodynamique : applications à la chimie
Changement d’état des alliages métalliques
Définitions
Enthalpie de formation et de réaction
Enthalpie de réaction
Énergie, enthalpie de liaison
Enthalpie réticulaire
Variation de l’enthalpie de réaction avec la température
Température de flamme et température d’explosion
Le cycle de Hess
Considérons la réaction :
∆H ?
état initial (réactifs) −−−−−−−−−−→ état final (produits).
P=cste, T =cste
Généralement, il s’agit d’une transformation irréversible.
Étant donné que ∆H ne dépend pas du chemin suivi, il est possible de décomposer cette
réaction en plusieurs réactions dont on connaît les ∆H, même si cette décomposition
est fictive et qu’elle ne correspond pas à la réalité. C’est la construction du cycle de
Hess.
Sur le cycle, on a
P
i
∆Hi − ∆H = 0 et donc
∆H =
P
Thermodynamique chimique
i
∆Hi .
Premier principe de la thermodynamique : applications à la chimie
Enthalpie libre et potentiel chimique
Changement d’état du corps pur
Second principe de la thermodynamique : applications à la chimie
Changement d’état des alliages métalliques
Définitions
Enthalpie de formation et de réaction
Enthalpie de réaction
Énergie, enthalpie de liaison
Enthalpie réticulaire
Variation de l’enthalpie de réaction avec la température
Température de flamme et température d’explosion
Exemple d’application... et généralisation
Considérons la réaction :
P=1 bar
Nasolide + HClgaz −−−−−−→
T =298 K
1
H2gaz + (Na+ Cl− )solide .
2
Les tables thermodynamiques donnent
∆f H 0 (HClgaz )=−92 kJ.mol−1
1
1
H2gaz + Cl2gaz −−−−−−−−−−−−−−−−−−−→ HClgaz
2
2
Nasolide +
∆f H 0 ((Na+ Cl− )
)=−411 kJ.mol−1
1
Cl2gaz −−−−−−−−−−−solide
−−−−−−−−−−−−−−→ (Na+ Cl− )solide
2
On peut alors considérer le cycle suivant :
∆r H 0 = −∆f H 0 (HClgaz ) + ∆f H 0 ((Na+ Cl− )solide )
soit ∆r H 0 = −319 kJ.mol−1 .
Plus généralement :
P
P
0
0
∆r H 0 =
i νi ∆f H (produit) −
i νi ∆f H (réactif).
~
Les cycles de Hess ne sont pas toujours aussi simples.
Thermodynamique chimique
Premier principe de la thermodynamique : applications à la chimie
Enthalpie libre et potentiel chimique
Changement d’état du corps pur
Second principe de la thermodynamique : applications à la chimie
Changement d’état des alliages métalliques
Définitions
Enthalpie de formation et de réaction
Enthalpie de réaction
Énergie, enthalpie de liaison
Enthalpie réticulaire
Variation de l’enthalpie de réaction avec la température
Température de flamme et température d’explosion
Pour une transformation quelconque, il est toujours possible de construire un cycle de
Hess, en fonction des données dont on dispose.
~
Pour chaque étape, un seul paramètre doit varier (T , P, changement d’état, ...)
Considérons la transformation
avec ∆r H = ∆H1 + ∆H2 + ∆H3 + ∆H4 .
On pourra alors écrire
R 373
∆r H = ∆f H 0 (H2 Oliquide ) + 298
ncP (H2 Oliquide )dT
R
400
+∆vaporisation H 0 (H2 O) + 373
ncP (H2 Ogaz )dT
Thermodynamique chimique
Premier principe de la thermodynamique : applications à la chimie
Enthalpie libre et potentiel chimique
Changement d’état du corps pur
Second principe de la thermodynamique : applications à la chimie
Changement d’état des alliages métalliques
Définitions
Enthalpie de formation et de réaction
Enthalpie de réaction
Énergie, enthalpie de liaison
Enthalpie réticulaire
Variation de l’enthalpie de réaction avec la température
Température de flamme et température d’explosion
L’énergie interne de liaison et l’enthalpie de liaison sont définies comme étant l’énergie
interne et l’enthalpie libérée lors de la formation d’un produit gazeux dans les conditions
standard à partir d’atomes eux-mêmes pris à l’état gazeux et supposés au départ éloignés
à l’infini les uns des autres.
Comme dans les cas précédents, nous pourrons considérer
l’énergie interne de liaison si la transformation est à volume constant ;
l’enthalpie de liaison si la transformation est à pression constante.
On les note respectivement ∆l U ou E l et ∆l H.
Si une liaison s’établit spontanément, cela signifie que le produit formé est plus stable
que l’ensemble formé par les réactifs ⇒ E l ou ∆l H < 0.
À l’opposé, l’énergie interne de dissociation et l’enthalpie de dissociation sont définies comme étant l’énergie interne et l’enthalpie qu’il faut fournir pour rompre
une liaison ⇒ DXX ou ∆d H > 0. Dans le cas particulier des molécules diatomiques,
DXX = −E l et ∆d H = −∆l H.
~
D’une manière générale, il ne faut pas confondre les grandeurs de liaison avec celles
de dissociation. Les premières représentent en fait la moyenne des secondes présentes
au sein d’une molécule.
Thermodynamique chimique
Premier principe de la thermodynamique : applications à la chimie
Enthalpie libre et potentiel chimique
Changement d’état du corps pur
Second principe de la thermodynamique : applications à la chimie
Changement d’état des alliages métalliques
Définitions
Enthalpie de formation et de réaction
Enthalpie de réaction
Énergie, enthalpie de liaison
Enthalpie réticulaire
Variation de l’enthalpie de réaction avec la température
Température de flamme et température d’explosion
Quelques ordres de grandeur (en kJ.mol−1 ) :
H−H : E l = −436
O=O : E l = −498
Cl−Cl : E l = −244
N−N : E l = −157
N=N : E l = −416
N≡N : E l = −944
C−C : E l = −342
C=C : E l = −613
C≡C : E l = −810
On peut également déduire l’énergie interne de la liaison O−H dans la molécule H2 O.
En effet, en considérant le cycle suivant
w 2E l (O − H) = E l (H − H) +
+∆f U(H2 O)
1 l
E (O = O)
2
et donc E l (O − H) = −463, 5 kJ.mol−1 .
Si la réaction s’opère à pression constante, on parlera d’enthalpie de liaison. Lorsque
tous les composés sont gazeux, on a alors la relation ∆l H = E l + RT ∆ngaz ou encore
QP = QV + RT ∆ngaz .
~
Lors de la construction d’un cycle, écrire tous les termes en énergie ou en enthalpie
mais ne surtout pas mélanger les deux.
Thermodynamique chimique
Premier principe de la thermodynamique : applications à la chimie
Enthalpie libre et potentiel chimique
Changement d’état du corps pur
Second principe de la thermodynamique : applications à la chimie
Changement d’état des alliages métalliques
Définitions
Enthalpie de formation et de réaction
Enthalpie de réaction
Énergie, enthalpie de liaison
Enthalpie réticulaire
Variation de l’enthalpie de réaction avec la température
Température de flamme et température d’explosion
DIFFÉRENCE ENTRE ENTHALPIES DE LIAISON ET DE FORMATION
∆f H(CH4 ) = −75 kJ.mol−1 à T = 298 K
4∆l H(C − H) = −1664 kJ.mol−1 à T = 298 K
∆f H(HCl) = −92 kJ.mol−1 à T = 298 K
∆l H(H − Cl) = −430 kJ.mol−1 à T = 298 K
Thermodynamique chimique
Premier principe de la thermodynamique : applications à la chimie
Enthalpie libre et potentiel chimique
Changement d’état du corps pur
Second principe de la thermodynamique : applications à la chimie
Changement d’état des alliages métalliques
Définitions
Enthalpie de formation et de réaction
Enthalpie de réaction
Énergie, enthalpie de liaison
Enthalpie réticulaire
Variation de l’enthalpie de réaction avec la température
Température de flamme et température d’explosion
L’enthalpie réticulaire est l’enthalpie mise en jeu lors de la cristallisation d’un solide
à partir des constituants pris à l’état d’ions gazeux s’approchant depuis l’infini pour
former le cristal. C’est une grandeur standard.
H0
∆
reticulaire
−
Exemple : Na+
−−
−−−−−→ (Na+ Cl− )solide
gaz + Clgaz −
De même que l’enthalpie de liaison, l’enthalpie réticulaire est négative, le cristal étant
un état plus stable que celui des constituants.
Cette quantité fait intervenir un certain nombre de grandeurs qui apparaissent en
construisant le cycle dit « de Born-Haber »
−∆H10 est l’enthalpie d’ionisation de Na mais
également l’énergie d’ionisation puisque ∆ngaz = 0.
Cela correspond à la réaction
Nagaz −−→ Na+ gaz + e– .
∆H20 est l’affinité électronique de Cl. Là-encore, il
n’y a pas à distinguer l’enthalpie de l’énergie puisque
∆ngaz = 0. Cela correspond à la réaction
−
Cl−
gaz −→ Clgaz + e .
−∆H30 est l’enthalpie de sublimation de Na.
∆H40 est la moitié de l’enthalpie de la liaison Cl−Cl.
∆H50 est l’enthalpie de formation de (Na+ Cl− )solide .
Dans cet exemple, ∆reticulaire
H0
= −496 + 349 − 106 − 238/2 − 413 = −785 kJ.mol−1 .
Thermodynamique chimique
Premier principe de la thermodynamique : applications à la chimie
Enthalpie libre et potentiel chimique
Changement d’état du corps pur
Second principe de la thermodynamique : applications à la chimie
Changement d’état des alliages métalliques
Définitions
Enthalpie de formation et de réaction
Enthalpie de réaction
Énergie, enthalpie de liaison
Enthalpie réticulaire
Variation de l’enthalpie de réaction avec la température
Température de flamme et température d’explosion
Connaissant la variation d’enthalpie pour une réaction à une température donnée, on
peut avoir besoin de connaître la variation d’enthalpie de cette même réaction à une
autre température.
Considérons la réaction générale suivante : aA + bB −−→ cC + dD. On cherche alors
P
P
j νj ∆f Hj = f (T ) (νi ≡ coefficients stœchiométriques)
i νi ∆f Hi −
∆r H =
soit ∆r H(T ) = d∆f HD + c∆f HC − b∆f HB − a∆f HA .
Or, si on peut considérer les capacités calorifiques indépendantes de T ,
on a δQP = d∆f Hk = cP,k dT .
P
P
P
∂∆r H
∂ P
Ainsi,
=
i νi ∆f Hi −
j νj ∆f Hj =
i νi cP,i −
j νj cP,j = ∆CP
∂T
∂T
où ∆CP = dcP,D + ccP,C − bcP,B − acP,A .
RT
En intégrant, on obtient [∆r H]T
T0 = T0 ∆CP dT
Thermodynamique chimique
Premier principe de la thermodynamique : applications à la chimie
Enthalpie libre et potentiel chimique
Changement d’état du corps pur
Second principe de la thermodynamique : applications à la chimie
Changement d’état des alliages métalliques
Définitions
Enthalpie de formation et de réaction
Enthalpie de réaction
Énergie, enthalpie de liaison
Enthalpie réticulaire
Variation de l’enthalpie de réaction avec la température
Température de flamme et température d’explosion
La loi de Kirchhoff
qui conduit finalement à la loi de Kirchhoff
∆r H(T ) = ∆r H(T0 ) +
RT
∆Ur (T ) = ∆r U(T0 ) +
RT
T0
T0
∆CP dT
∆CV dT
~
Dans le cas où des changements d’état interviennent dans l’intervalle de température considéré, cette loi n’est plus valable. Il faut alors construire un cycle faisant
apparaître explicitement les changements d’état.
Thermodynamique chimique
Premier principe de la thermodynamique : applications à la chimie
Enthalpie libre et potentiel chimique
Changement d’état du corps pur
Second principe de la thermodynamique : applications à la chimie
Changement d’état des alliages métalliques
Définitions
Enthalpie de formation et de réaction
Enthalpie de réaction
Énergie, enthalpie de liaison
Enthalpie réticulaire
Variation de l’enthalpie de réaction avec la température
Température de flamme et température d’explosion
Prenons l’exemple de la réaction en phase gazeuse à T = 400 K :
H2 gaz +
1
2
O2 gaz −−→ H2 Ogaz .
0
Connaissant ∆f H (H2 O) = −285 kJ.mol−1 , ∆vap H 0 (H2 O) = 44 kJ.mol−1 et en supposant les capacités calorifiques constantes sur l’intervalle de température considéré telles que
cP (H2gaz ) = 30 J.K−1 .mol−1 , cP (O2gaz ) = 29 J.K−1 .mol−1 , cP (H2 Ogaz ) = 33 J.K−1 .mol−1
et cP (H2 Oliquide ) = 75 J.K−1 .mol−1 , on peut écrire le cycle :
0
373
0
soit ∆r H = (cP (H2 )+1/2cP (O2 ))[T ]298
400 +∆f H (H2 O)+cP (H2 Oliquide )[T ]298 +∆vap H (H2 O)+
cP (H2 Ogaz )[T ]400
373
et en aucun cas autre chose !
Ainsi, ∆r H = (30.10−3 + 0.5 × 29.10−3 )(298 − 400) − 285 + 75.10−3 (373 − 298) + 44 +
33.10−3 (400 − 373) = −239 kJ.mol−1 .
Thermodynamique chimique
Premier principe de la thermodynamique : applications à la chimie
Enthalpie libre et potentiel chimique
Changement d’état du corps pur
Second principe de la thermodynamique : applications à la chimie
Changement d’état des alliages métalliques
Définitions
Enthalpie de formation et de réaction
Enthalpie de réaction
Énergie, enthalpie de liaison
Enthalpie réticulaire
Variation de l’enthalpie de réaction avec la température
Température de flamme et température d’explosion
Étudions pour finir le cas de réactions chimiques suffisamment rapides afin de pouvoir les
considérer comme adiabatiques sur un intervalle de temps pas trop grand, provoquant
ainsi une brusque variation de la température du système sur ce même intervalle de
temps. On peut alors définir deux températures particulières :
la température de flamme qui est la température atteinte par une réaction
adiabatique à pression constante ;
la température d’explosion qui est la température atteinte par une réaction
adiabatique à volume constant.
Pour les calculer, on utilise le cycle suivant :
d’où on peut extraire Tf ou Te via la relation :
RT
R
∆r H 0 (T0 ) + T0f νk cP,k dT = 0 ou ∆r U 0 (T0 ) + TT0e νk cV ,k dT = 0,
en tenant compte des éventuels changements d’état.
Thermodynamique chimique
Premier principe de la thermodynamique : applications à la chimie
Enthalpie libre et potentiel chimique
Changement d’état du corps pur
Second principe de la thermodynamique : applications à la chimie
Changement d’état des alliages métalliques
Définitions
Enthalpie de formation et de réaction
Enthalpie de réaction
Énergie, enthalpie de liaison
Enthalpie réticulaire
Variation de l’enthalpie de réaction avec la température
Température de flamme et température d’explosion
On considère un système gazeux à T = 298 K constitué de 2 moles de O2 , 8 moles de
N2 et de 1 mole de CH4 . On amorce la réaction violente en phase gazeuse :
CH4 + 2 O2 −−→ 2 H2 O + CO2
à l’aide d’une étincelle. D’après le résultat énoncé précédemment, on a donc :
∆r H 0 + [nCO2 cP (CO2 ) + nN2 cP (N2 )](Tf − 298)
+nH2 O cP (H2 Oliquide )(373−298)+∆vap H(H2 O)+nH2 O cP (H2 Ogaz )(Tf −373) = 0
à pression constante ;
∆r U 0 + [nCO2 cV (CO2 ) + nN2 cV (N2 )](Te − 298)
+nH2 O cV (H2 Oliquide )(373−298)+∆vap U(H2 O)+nH2 O cV (H2 Ogaz )(Te −373) = 0
à volume constant ;
d’où on tire Tf ≈ 2100 K et Te ≈ 3500 K.
Ces deux valeurs ne sont que des approximations. En effet, les capacités calorifiques
dépendent de la température d’une part, et il y a échange de chaleur avec ME dès le
début de la réaction d’autre part. Pour cet exemple, si la température de flamme trouvée
est une estimation accepatable de celle d’un chalumeau, la température d’explosion est
en revanche un peu trop élevée.
Thermodynamique chimique
Téléchargement