Tale STL
SPCL
LT Catalins 1/7
Classe : Terminale STL-SPCL
Enseignement : Physique-chimie PCL
THEME du programme : Ondes
Sous-thème : les ondes pour observer et mesurer
Problématique générale de la séquence
Les activités proposées conduisent les élèves à relier la résolution d’un imageur (télescope associé à un
capteur CCD) à ses caractéristiques (diamètre du miroir primaire, résolution du capteur CCD). La
résolution est limitée par celle du capteur mais aussi par le phénomène de diffraction lié à la taille du miroir
primaire. Pour améliorer la résolution de l’instrument, il faut augmenter la taille du miroir primaire ou mettre
en œuvre une méthode interférométrique.
Organisation de la séquence
Durée : 5h à 6h
Position dans la progression de l’année : Cette séquence intervient après l’étude du télescope et de ses
caractéristiques.
Progression succincte en activités :
Recherche d’un critère de résolution d’un imageur (télescope + capteur CCD) afin de « séparer »
une étoile double.
Découverte du phénomène de diffraction : c’est la taille limitée du miroir primaire qui limite la
résolution de l’imageur.
Mise en œuvre d’une méthode interférométrique pour augmenter la résolution de l’imageur.
Titre des activités décrites dans la ressource :
Activité 1 : Résolution et caractéristiques de l’instrument
Activité 2 : La résolution limitée par la taille du miroir primaire
Activité 3 : Comment augmenter le pouvoir de résolution : la méthode interférométrique
Description des activités
Activité 1 : Le capteur CCD étant placé au plan focal du télescope, on recherche l’angle minimal permettant
de distinguer deux objets stellaires proches. La résolution de l’imageur est limitée par la distance focale et
la résolution du capteur CCD.
Activité 2 : Une activité documentaire permet de constater que la taille limitée du miroir primaire est un
facteur limitant pour la résolution de l’imageur (phénomène de diffraction). Un protocole expérimental est
proposé et réalisé par les élèves pour évaluer l’angle de diffraction en fonction de la taille de l’ouverture.
Activité 3 : L’activité permet de découvrir puis de mettre en œuvre une méthode interférométrique pour
améliorer le pouvoir de résolution.
Proposition : Une activité documentaire permet de découvrir la méthode interférométrique pour améliorer la
résolution de l’imageur. A partir de cette étude, un protocole expérimental est proposé et réalisé par les
élèves pour observer le phénomène.
Objectifs visés
Relier la résolution de l’imageur à la distance focale et à la résolution du capteur CCD.
Associer la résolution à la taille du miroir primaire et donc au phénomène de diffraction.
Relier la taille de l’image de diffraction à la taille de l’ouverture.
Relier l’interfrange à la distance entre deux ouvertures.
L.T. Catalins page 2/7
Type d'activité
Démarche d’investigation et activité expérimentale
Structuration de connaissances
Réinvestissement et/ou approfondissement
Conditions de mise en œuvre
Conditions matérielles : un laboratoire de physique avec son matériel standard.
Travail en laboratoire (à 2)
Extrait du BOEN
NOTIONS ET CONTENUS
COMPETENCES ATTENDUES
Faisceaux de lumière ;
objectifs et oculaires ;
diffraction de la lumière par un diaphragme
circulaire, résolution d’un instrument d’optique.
Diffraction
Interférences, différence de marche entre deux
chemins.
- Mettre en évidence expérimentalement le phénomène
de diffraction.
- Prévoir les conséquences de la modification de la taille
de l’objet diffractant et de la longueur d’onde sur une
figure de diffraction.
- Associer le pouvoir de résolution d’un instrument au
phénomène de diffraction et aux propriétés du capteur.
- Utiliser un capteur dintensité lumineuse pour visualiser
une figure de diffraction d’une fente rectangulaire, d’un
fil.
- Citer et utiliser l’expression de l’angle d'ouverture d'un
faisceau monochromatique diffracté par une fente.
- Réaliser une mesure dimensionnelle en utilisant le
phénomène de diffraction.
- Identifier les différents chemins optiques entre une ou
plusieurs sources ponctuelles et un détecteur.
- Exprimer la différence de marche entre deux chemins
optiques.
- Relier l’intensité reçue par un capteur à la différence de
marche de deux ondes.
- Utiliser un capteur d’intensité lumineuse pour visualiser
une figure d’interférences, le protocole étant donné.
- Exploiter les interférences créées par un dispositif à
deux ondes et par un réseau.
Compétences transversales
(Préambule des programmes et socle commun)
Mobiliser ses connaissances
Rechercher, extraire, organiser des informations utiles (le BO précise l'information utile)
Formuler des hypothèses
Raisonner, argumenter, démontrer
Travailler en équipe
Provenance : Christophe.Truillet@ac-grenoble.fr; Carole.Boccaccio@ac-grenoble.fr
L.T. Catalins page 3/7
RESOLUTION D’UN IMAGEUR
I. Activité 1 : Résolution et caractéristiques de l’imageur
On souhaite observer une étoile double. La séparation angulaire des deux étoiles étant imposée, on
recherche un instrument capable de les observer distinctement. Le professeur peut proposer aux élèves
d’étudier les caractéristiques réelles d’instruments (instruments d’observatoires ou instruments du
commerce).
Exemple d’instrument : le télescope de 120 cm (diamètre du miroir primaire) de l’Observatoire de Haute
Provence (OHP) permet de faire de l’imagerie directe. Une caméra CCD (1024 1024 pixels) placée au
foyer Cassegrain capture l’image. Voir : http://www.obs-hp.fr/guide/t120.shtml
Caractéristiques de l’instrument :
- Distance focale du télescope : f ’ = 720 cm
- Taille d’un pixel : 24 µm 24 µm
On peut proposer aux élèves d’établir une démarche permettant de déterminer s’il est possible de
« séparer » deux étoiles double.
Une synthèse intermédiaire est réalisée avec les élèves pour proposer un « critère » de résolution : les
deux images doivent être séparées d’un pixel au moins. Le télescope est modélisé par une lentille
convergente pour réaliser une construction géométrique simple.
Comme les étoiles sont à l’infini, une construction réalisée et proposée par les élèves permet de déterminer
la séparation angulaire limite entre les deux étoiles :
- Distance minimale entre les deux images de chaque étoile : 1 pixel soit L = 24 µm
- Distance entre centre optique équivalent du système et capteur CCD : f ’ = 720 cm
La séparation angulaire limite est donc égale à : 0,69 secondes d’arc.
Conclusion : la résolution de l’ensemble est limitée par la distance focale du télescope et la résolution du
capteur CCD.
f ’
L.T. Catalins page 4/7
II. Activité 2 : la résolution limitée par la taille du miroir primaire
On propose aux élèves d’observer 3 images obtenues par 3 télescopes qui ont tous la même distance
focale mais des diamètres de miroir primaires différents.
Voir par exemple : http://media4.obspm.fr/public/AMC/pages_optique-ondulatoire/impression.html
La résolution est limitée par la diffraction de la lumière de l’étoile par l’ouverture du miroir primaire.
Même si l’angle de diffraction est faible, il peut être supérieur à la séparation angulaire minimale.
On demande aux élèves de proposer un lien entre le diamètre du miroir et l’élargissement angulaire de
l’image obtenue.
Pour résoudre l’étoile double, la séparation angulaire α doit remplir la condition :
𝛼> 1,22 𝜆
𝐷
Il est possible de mettre en œuvre une expérience de diffraction par des trous de petites dimensions et de
relier qualitativement la largeur de la tâche de diffraction à la taille du trou.
Le phénomène de diffraction limite la résolution de l’instrument mais peut être mis à profit pour réaliser des
mesures dimensionnelles. Dans ce cas on peut réinvestir les capacités pour réaliser la mesure de la taille
d’une fente (plus simple à mettre en œuvre pour réaliser des mesures quantitatives).
Le protocole est établi par les élèves, une synthèse peut être réalisée avant sa réalisation.
Exemple de protocole
Matériel : laser, fente de largeur inconnue notée a, caméra CCD
La relation entre la largeur de la tâche centrale et la taille de la fente est donnée aux élèves:
𝐿 = 2 𝜆𝐷
𝑎
Cette activité expérimentale est l’occasion d’identifier les sources d’erreur et d’évaluer l’incertitude sur a.
laser
fente
caméra CCD
D
a
Crédit : Astrophysique sur Mesure / B. Mollier
L.T. Catalins page 5/7
La mesure de la distance D peut poser problème. En effet, la barrette CCD étant à l’intérieur de la caméra,
il n’est pas simple de repérer sa position par rapport aux graduations du banc d’optique. L’erreur
systématique sur la mesure de D n’est donc pas facile à corriger.
L’incertitude associée à la mesure de la tâche centrale ne pose pas de problème.
Une autre possibilité consiste à réaliser plusieurs mesures de L pour différentes distances D. Dans ce cas
l’erreur systématique n’est pas gênante (il ne faut pas la corriger) puisque que la courbe représentative de
L en fonction de D est une droite (parallèle à celle que l’on aurait sans l’erreur systématique) et la valeur de
a est déterminée par la pente de cette droite. L’estimation de l’incertitude sur la pente est nécessaire pour
évaluer l’incertitude sur a. Dans ce cas on peut utiliser la fonction « Droitereg » du logiciel Excel qui
renvoie, entre autre, l’incertitude-type de la pente. Cette incertitude-type doit être composée (à l’aide du
logiciel GUM_MC de Jean-Marie BIANSAN par exemple).
III. Activité 3 : Comment augmenter le pouvoir de résolution : la méthode interférométrique
Une étude documentaire est proposée aux élèves sur le sujet de l’interférométrie optique utilisée sur le
VLTI (voir : http://amber.obs.ujf-grenoble.fr/IMG/pdf/VLTI_Amber.pdf). La méthode consiste à mélanger la
lumière reçue par deux télescopes distants (une centaine de mètres environ).
Un questionnaire (voir annexe) est distribué aux élèves afin qu’ils s’approprient le phénomène
d’interférences et puissent proposer un protocole expérimental mettant en évidence ce phénomène.
La résolution par la méthode interférométrique est équivalente à celle d’un télescope de 130 mètres de
diamètre. Elle est en fait de l’ordre de λ/B, B étant la ligne de base des deux télescopes (c'est-à-dire la
distance entre les deux télescopes qui peut atteindre une centaine de mètres). Par comparaison, la
résolution maximale avec un seul télescope (limitée par la diffraction) est environ égale à λ/D, D étant le
diamètre d’un télescope (8 mètres environ pour ceux du VLTI).
Les deux télescopes sont alors modélisés par les trous d’Young (ou fentes d’Young pour plus de
luminosité). Les élèves peuvent établir un protocole dont la synthèse est réalisée collectivement avant sa
réalisation. Il est aussi possible d’évaluer certaines capacités au cours de ces activités expérimentales.
Il est préférable d’utiliser une source laser pour s’affranchir des problèmes de cohérence spatiale (hors
programme pour les élèves). En effet l’utilisation d’une fente primaire n’est pas nécessaire avec le laser
(puisque c’est une source très cohérente spatialement) et évite les difficultés d’alignement entre fente et
bifente.
Le protocole proposé peut être le suivant
Matériel : laser, bifente, écran, caméra CCD
L’interférométrie peut être également mise à profit pour réaliser des mesures dimensionnelles (distance
entre les fentes). Le protocole expérimental est équivalent à celui de la diffraction.
Ecran
Laser
1 / 7 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !