E.C. P3 LOIS GENERALES
DES COURANTS ELECTRIQUES CHAPITRE 13-1
Document à compléter
1/7 Dernière modification : 30/08/2016
OBJECTIFS DU CHAPITRE :
Définir les trois grandeurs électriques que sont la tension, l’intensité, la puissance. Quels sont les constituants d’un circuit
électrique élémentaire ? Quelle est l’origine du courant électrique dans un circuit ?
Enoncer et appliquer les lois électriques dans un circuit, qui portent le nom de lois de Kirchhoff.
I LE COURANT ELECTRIQUE ; SON ORIGINE
1) Tension électrique et générateurs de tension
Décrivons un circuit aussi simple que possible : Pile, interrupteur, lampe
Le générateur (la pile) entretient entre ses bornes une
différence de potentiel, aussi appelée tension électrique. C’est
à la borne positive de la pile que, dans le circuit, le potentiel
est le plus élevé. A la borne négative, le potentiel est le plus
faible.
Sous l’influence de la différence de potentiel, un courant
électrique va circuler à travers le circuit fermé, et la lampe va
briller.
Si on ouvre l’interrupteur, il existe toujours une différence de
potentiel aux bornes de la pile, mais les bornes de la lampe
auront une même valeur de potentiel. Aucun courant ne
circulera, ni à travers le générateur, ni à travers la lampe.
La tension électrique maximale aux bornes d’un nérateur s’appelle la force électromotrice du générateur E en volts (V). C’est
lorsque le générateur ne débite aucun courant que cette tension est maximale.
Quel processus physique ou chimique peut-on utiliser pour concevoir un générateur de tension ? Voyons quelques exemples :
Dans une pile électrochimique, les
propriétés oxydoréductrices des
constituants engendrent une différence de
potentiel continue entre les deux demi-
piles.
Un champ magnétique et une bobine en
rotation relative engendrent dans celle-ci
une f.e.m. alternative. C’est le principe
des alternateurs (couplés à des turbines,
des éoliennes, etc.)
Une photodiode éclairée se comporte en
générateur de tension continue. Elle
convertit l’énergie électromagnétique reçue
en énergie électrique.
2) La nature du courant électrique
Par définition, un conducteur est un corps contenant des porteurs de charge mobiles. Peu importe le signe de ces charges ; il
dépend de la nature du conducteur. A l’échelle microscopique, un courant électrique est un placement d’ensemble de porteurs
de charge. Quand un conducteur est connecté aux bornes d’un nérateur, la différence de potentiel entre les deux bornes de
celui-ci engendre un courant électrique dans le conducteur : Les porteurs chargés positivement « descendent » les potentiels
(déplacement dans le sens des potentiels décroissants) ; les porteurs négatifs « remontent » les potentiels. Ces déplacements de
charges dans des sens opposés imposent le choix d’un sens conventionnel pour le courant électrique.
Sens conventionnel du courant : Par convention le courant descend les potentiels à l’extérieur du générateur. Le courant
conventionnel est noté I ( > 0 ).
img-europe.electrocomponents.com
V
E.C. P3
CHAPITRE 13-1
Document à compléter
2/7 Dernière modification : 30/08/2016
Envisageons deux exemples de conducteurs usuels. Soient A et B leurs bornes, et dans les deux cas, le potentiel V
A
en A est
supposé supérieur au potentiel V
B
. La tension électrique U
AB
= V
A
-V
B
est donc positive.
Conducteur métallique
Les électrons de conduction se déplacent dans le sens opposé au
sens conventionnel.
Solution aqueuse ionique
Les cations se placent dans le sens conventionnel ; les
anions dans le sens opposé.
3) L’intensité du courant électrique
C’est une mesure du débit de charge, définie algébriquement (elle peut être positive ou négative) et notée i.
On choisit arbitrairement un sens pour i ; par exemple de M vers N.
Soit (Σ) une section quelconque de la branche.
Par définition : dq est la quantité d’électricité qui
traverse la section (Σ) dans le sens de i, pendant la durée dt.
Exemple :
Si V
M
> V
N
: Sens du courant conventionnel : i =
Si V
M
< V
N
: Sens du courant conventionnel : i =
Utilisons cette notion pour déterminer la vitesse d’ensemble des électrons de conduction dans un conducteur. Un fil de cuivre
cylindrique de section 1 mm
2
est parcouru par un courant continu d’intensité 1,0 A. Dans les conditions usuelles, le cuivre
contient n = 8,48.10
28
électrons de conduction par mètre cube.
Charge élémentaire : e =
Le courant étant continu, son intensité instantanée est égale à son intensité moyenne :
=
dt
dq
Les électrons qui traversent une section du fil pendant une durée
t
choisie
arbitrairement, sont contenus dans le cylindre de section
S
= 1 mm
2
et de longueur
l
.
Nombre d’électrons en transit : Ils transportent la charge :
D’où l’expression de l’intensité du courant :
Et la vitesse d’ensemble des électrons de conduction .
On trouve numériquement une vitesse extrêmement petite : 7,6.10
-5
m.s
-1
. Ce n’est pas la vitesse individuelle d’un électron, mais
la vitesse à laquelle se déplace le nuage d’électrons de conduction sous l’action de la tension électrique aux bornes du fil. Quant à
la vitesse individuelle d’un électron, elle est essentiellement due à son agitation thermique ; elle est très élevée : 10
5
m
.
s
-1
.
AB
I
U
AB
= V
A
-V
B
> 0
V
A
V
B
IV
B
I
U
AB
A
-V
B
> 0
V
A
V
B
e-
M
N
(Σ)
i
)(
)
(
)(
A
C
s
dt
dq
i=
e
S
n
I
v
.
.
=
E.C. P3
CHAPITRE 13-1
Document à compléter
3/7
Dernière modification : 30/08/2016
II CONSTITUTION DES CIRCUITS ELECTRIQUES
1) Vocabulaire des circuits électriques
Un circuit simple est constitué de dipôles : constituants d’un circuit électrique munis de deux bornes (pile, lampe, résistance,
etc.). Il présente des nœuds, des branches et des mailles.
Nœud: point de jonction de trois conducteurs au moins.
Branche: ensemble de dipôles montés en série entre deux nœuds.
Maille: contour fermé constitué par une suite de branches.
Exemple:
Le circuit ci-contre est constitué d’une pile (E,F) et de cinq résistances.
Dénombrons nœuds, branches et mailles.
4 nœuds:
6 branches:
5 mailles (au moins):
A
B
C
D
EF
R
R
R
R
R
2) Associations en série ou en parallèle
Deux dipôles sont en série s’ils appartiennent à une même branche
Propriété : Deux dipôles en série sont traversés par une même intensité.
Deux dipôles sont en parallèle si leurs bornes sont reliées deux à deux.
Propriété : Les tensions aux bornes de deux branches en parallèle sont égales.
Exemple (barrer les réponses fausses) :
Dipôles traversés par la même intensité :
G et D
1
D
1
et D
2
D
1
et D
3
D
3
et D
4
Tensions égales aux bornes de :
Association (G,D
1
) et D
2
D
3
et D
4
D
2
et D
4
Association (D
3
,D
4
) et D
2
D1D3
D2
D4
G
III RESISTANCE ELECTRIQUE ; LOI D’OHM ET LOI DE JOULE
1) Origine microscopique de la résistance
Un porteur de charge isolé soumis à une différence de potentiel continue subit une force électrique. Sous l’action de cette force,
d’après la deuxième loi de Newton, cette particule accélère « indéfiniment », c’est-à-dire tant que l’on reste dans le domaine de la
mécanique non relativiste (vitesse très inférieure à la vitesse de la lumière).
Pourtant, dans un conducteur métallique, une tension continue engendre un courant continu : la vitesse de conduction est
constante. D’après la première loi de Newton, l’électron est pseudo-isolé. C’est donc qu’en plus de la force électrique, l’électron
subit une autre force qui compense la première. Quelle est l’origine de cette force ?
Les électrons de conduction font partie de l’ensemble plus vaste des électrons des atomes constituant le cristal de métal. Il est
donc logique de penser que c’est le réseau cristallin qui exerce ce qui peut s’apparenter à une force de frottement : Le métal
exerce une résistance au passage du courant.
Avant d’étudier les paramètres influant sur la résistance d’un conducteur, voyons quel comportement électrique induit celle-ci.
E.C. P3
CHAPITRE 13-1
Document à compléter
4/7
Dernière modification : 30/08/2016
2) La loi d’Ohm
Pour bon nombre de conducteurs, notamment métalliques, la tension électrique est proportionnelle à l’intensité du courant. La loi
d’Ohm ainsi énoncée traduit la résistance du composant au passage du courant.
On exprime la loi d’Ohm en
convention récepteur : flèches de
tension et d’intensité de sens
opposés :
R
i
U
en convention récepteur:
U
=
R
.
i
La résistance, définie comme le coefficient de proportionnalité entre
U
et i, s’exprime en ohms ().
La loi d’Ohm peut également s’exprimer en termes de conductance : est la conductance en siemens
3) Résistivité d’un matériau
Quels paramètres caractéristiques du composant conducteur influent sur la résistance de celui-ci ? Il s’agit d’appréhender la
capacité qu’a le composant à s’opposer au passage du courant. Cette opposition sera d’autant plus grande que :
la section du conducteur est petite (la section S limite le débit de charge, donc l’intensité du courant).
R
varie en 1/S.
la longueur du conducteur est grande (plus le conducteur est long, plus le porteur subit de « frottements » de la part du réseau
cristallin).
R
est proportionnelle à l.
R
est donc proportionnelle à
S
l
; ce qui s’écrit
Mais la résistance dépend encore d’autres paramètres, notamment de la nature du matériau conducteur.
ρ
est la résistivité du
matériau conducteur. Plus
ρ
est grande, moins le matériau est conducteur.
Unité de résistivité : l’ohm-mètre (.m)
4) Puissance électrique ; loi de Joule
La puissance électrique absorbée par un dipôle (D) est :
abs
(W) (V) (A)
P U i
= •
en convention récepteur.
Remarques :
Un récepteur absorbe de la puissance électrique.
Donc, pour un récepteur, la puissance absorbée est positive
pour un générateur, la puissance absorbée est négative. pour un récepteur P
abs
> 0
pour un générateur P
abs
< 0
Cas des conducteurs ohmiques :
Nous interprétons le phénomène de résistance comme des frottements exercés par le cristal sur les électrons de conduction. Or les
frottements engendrent une dissipation d’énergie sous forme d’énergie thermique.
Pour une résistance, toute l’énergie électrique absorbée par le composant est dissipée dans le milieu extérieur sous forme
d’énergie thermique. C’est la loi de Joule.
Puissance électrique dissipée par effet Joule :
0iR i U P
2
2
J
===
R
U
.
E.C. P3
CHAPITRE 13-1
Document à compléter
5/7
Dernière modification : 30/08/2016
5) Limite du modèle classique
C’est dans le cadre de la mécanique classique que nous avons ici interprété le phénomène de résistance. Or, elle s’applique pour
des vitesses pas trop élevées (les vitesses thermiques des électrons sont ici très grandes), et pour des distances grandes devant les
distances atomiques (nous raisonnons ici sur des particules élémentaires). On peut donc s’attendre à l’observation de phénomènes
inexplicables par notre modèle.
On peut citer par exemple le phénomène de supraconductivité, qui ne peut s’étudier que dans le cadre de la physique quantique :
En deçà d’une certaine température (très basse), certains matériaux conducteurs perdent toute résistance : le courant peut circuler
« indéfiniment » dans le circuit, sans aucune atténuation.
6) Association de résistances
Considérons le montage ci-contre, et posons-nous la question : Quelle est la résistance du
réseau de bornes D et F ? C’est-à-dire quelle serait la valeur de l’unique résistance
équivalente R
12
, qui aurait la même résistance que l’association série des deux résistances
R
1
et
R
2
?
Pour commencer, raisonnons de manière qualitative. Le trajet de D à F étant unique, le
courant devra traverser à la fois
R
1
et
R
2
. Les porteurs de charge devront donc subir
l’opposition au passage du courant due à
R
1
, et celle due à
R
2
. Les effets s’ajoutant, on peut
penser que la résistance unique exerçant la même opposition au passage du courant que
l’association série
R
1
,
R
2
, aurait pour valeur :
R
12
=
R
1
+
R
2
Analysons quantitativement cette conjecture : U
0
= V
D
– V
F
= (V
D
– V
E
) + (V
E
– V
F
)
Donc U
0
=
R
1
.
i +
R
2
.i qu’on peut écrire U
0
= (
R
1
+
R
2
)i
Si R
12
est la résistance équivalente entre D et F : U
0
=
R
12
.
i
Par identification :
R
12
=
R
1
+
R
2
pour des résistances en série
En série
R12 = R1 + R2
Association en parallèle :
Cette fois, il y a deux trajets possibles pour traverser
l’association. Le réseau oppose donc moins de résistance
que si
R
1
était seule, ou que si
R
2
était seule. On peut donc
conjecturer que la résistance équivalente est inférieure à
R
1
et inférieure à
R
2
. Une monstration semblable à la
précédente donne, en termes de conductance :
En parallèle
R
1
R
2
R
12
G12 = G1 + G2
R
1
R
2
R
12
1 / 7 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !