1
Christian Guilié septembre 2014
Similitude et couche limite
I Analyse dimensionnelle et similitude
I-1 Analyse dimensionnelle
L’analyse dimensionnelle permet de réduire le nombre de paramètres à étudier pour
comprendre les phénomènes physiques intervenants dans le fonctionnement d’une machine.
Ainsi on simplifiera la compréhension et on réduira d’autant le nombre de mesure à effectuer
pour décrire le fonctionnement le plus complètement possible.
Exemple :
On veut étudier les forces
R
r
qu’exercent un fluide sur un mobile (domaine de
l’aérodynamique). On fait le bilan des paramètres intervenants sur le mouvement :
Les caractéristiques dimensionnelles (forme, dimension caractéristique d, incidence
α
), vitesse C, masse volumique
ρ
et viscosité du fluide
µ
, vitesse du son a, accélération de la
pesanteur g. Pour des corps géométriquement semblables (forme homothétique), le
mouvement dépend de 7 paramètres. Si l’on veut couvrir le domaine avec 10 mesures par
paramètres on doit effectuer 10
7
mesures (dix million !!!)
On montre qu’en mécanique il n’existe que 3 grandeurs fondamentales : L, M, T. Le
théorème de Vachy-Buckingham dit que l’on peut réduire du nombre de grandeurs
fondamentales p le nombre paramètres n en formant n-p nombres adimensionnels.
Exemple :
Dans l’exemple précédent il ne reste que 7-3=4 variables adimensionnelles. Donc plus
que 10
4
(Dix mille) mesures à effectuer !
En mécanique des fluides on préfère utiliser des variables primaires qui sont des
combinaisons des variables fondamentales : d, C,
ρ
. On forme les nombres adimensionnels
suivants :
Reynolds:
νµ
ρ
dCdC
R
e
... == , Mach :
a
C
M=
, Froude :
gd
C
Fr
.
=
et l’incidence
α
Toute grandeur adimensionnelle dérivée pourra donc s’exprimer en fonction
uniquement de ces 4 variables. Dans notre exemple, chaque composante
Ri
de
R
r
possède
une grandeur adimensionnelle dérivée
Ci
(appelée coefficient de trainée, dérive, portance cf.
cours d’aérodynamique):
2
2
1SC
R
Ci
ρ
=
2
Christian Guilié septembre 2014
Ces coefficients ne sont donc fonction que des paramètres adimensionnels définis plus
haut :
),,,( FrMRfCi
e
α
=
I-2 Similitude exacte
Pour l’étude des phénomènes physiques en canique des fluides, on a recours à des
maquettes qui sont souvent de dimensions réduites par rapport à l’appareil réel (essai en
soufflerie, prix, tailles des instruments, puissance...). La
similitude
entre le modèle et sa
maquette est
exacte
lorsque le modèle et la maquette sont homothétiques et que tous les
paramètres adimensionnels sont égaux. Alors on peut transposer au modèle les résultats
obtenus sur la maquette.
La similitude exacte entre le modèle et la maquette est en général impossible pour des
questions matérielles : on ne peut pas faire varier g sur terre, la viscosité ou la vitesse du son
sont imposées par le choix du fluide d’essai et ne sont pas continument variables…
Exemple :
Pour l’exemple précédent, supposons qu’on veuille essayer une maquette en soufflerie,
l’identité de Mach impose C
maquette
=C
modèle
car on utilise de l’air à une température
sensiblement égale. L’identité de Froude impose donc que d soit constante donc en toute
rigueur on ne peut pas avoir de similitude exacte avec une maquette à échelle réduite.
I-3 Similitude restreinte
La gravité n’intervient dans le mouvement du fluide que lorsque l’on a une surface
libre (carène de navire, écoulements de rivières…). Si le Mach est faible il n’a aucune
influence sur l’écoulement (cf. mécanique des fluides compressibles). Donc :
),(
e
RfCi
α
=
Exemple :
On essaie une maquette d’aile de planeur dans une soufflerie atmosphérique. Le
modèle vole à 40m/s la maquette est au 1/10. Comme la pression et la température sont
identiques sur la maquette et le modèle, la viscosité cinématique
ν
est identique. Donc la
similitude de Re entraine de choisir une vitesse C de 400m/s car d est divisé par 10 ! Cette
vitesse est supersonique donc l’effet de Mach n’est plus négligeable. La similitude exacte
n’est donc pas possible avec ces contraintes.
Il existe un moyen très onéreux de diminuer
ν
c’est d’utiliser une soufflerie sous
pression : En effet nous avons vu en première année que la viscosité dynamique
µ
était
indépendante de la pression donc la viscosité cinématique
ρ
µ
ν
= comme
rT
p
=
ρ
est
inversement proportionnelle à la pression. Si l’on utilise une soufflerie sous 10bars avec une
maquette à l’échelle 1/10 et les mêmes autres paramètres, la similitude exacte est réalisée.
3
Christian Guilié septembre 2014
Un autre moyen, si l’on ne cherche pas à connaitre avec précision la composante de
trainée (essentiellement due à la viscosité) est d’utiliser la
similitude restreinte
en postulant
que si le Reynolds est élevé celui-ci n’a que peu d’effet sur la couche limite donc sur
l’écoulement et en particulier sur les autres composantes que la trainée. Donc :
)(
α
fCi
=
II Couche limite
II-1 Définition
Expérimentalement on a observé que, dans le cas d’écoulements industriels fort
Reynolds), près de la paroi la vitesse décroissait rapidement pour devenir nulle sur celle-ci .
Ainsi on peut le schématiser en considérant deux régions distinctes :
- une région éloignée de la paroi dans la quelle la viscosité ne joue aucun rôle et donc obéi
aux lois de la mécanique des fluides non visqueux.
- une région de faible épaisseur près de la paroi la viscosité joue un rôle prépondérant mais
dont la direction est connue. Cette région est appelée «
couche limite
»
Conventionnellement, on définit son
épaisseur telle que
Uu .99,0)(
=
δ
. La figure
ci-dessus est très dilatée dans la sens y car par
exemple la couche limite au bord de fuite
d’une aile d’avion est de l’ordre de quelques
cm.
Cette façon de voir l’écoulement est
très pratique tant du point de vue théorique que
du point de vue expérimental. Du point de vue
théorique on va pouvoir calculer deux écoulement simplifiés : l’un non visqueux
bidimensionnel et l’autre visqueux mais monodimensionnel ce qui sépare les difficultés. Du
point de vue expérimental ça va nous permettre de comprendre physiquement le
comportement de nos écoulements.
II-2 CL laminaire et CL turbulente
II-2-1 Exemple de la plaque plane
Pour raison de simplicité, on a coutume d’étudier d’abord l’écoulement sur une plaque
plane. La couche limite se développe le long de la paroi de cette plaque comme schématisé
sur la figure ci-dessous. Dans le sens de l’écoulement le fluide sain est progressivement
« contaminé » par la présence de la paroi, les filets fluides glissant les un sur les autres
(écoulement laminaire) en gagnant sur l’écoulement non perturbé. Puis l’épaisseur de CL
4
Christian Guilié septembre 2014
devenant trop importante pour que celle-ci reste stable, elle transite alors en CL turbulente à
un Reynolds calculé avec l’épaisseur
δ
de l’ordre de Re
δ
=2000. Cela correspond à un
Reynolds calculé avec la distance au bord d’attaque de la plaque x de Re
x
=5.10
5
II-2-2 Profil de vitesse
Au Reynolds de transition
Re
x
=5.10
5
les profils de vitesse ont l’allure
indiquée sur la figure ci-contre :
Dans les couches limites les
contraintes de cisaillement
τ
sont
proportionnelles au gradient de vitesse y
U
.
Dans les couches laminaires (couche
laminaire et sous couche) le coefficient de
proportionnalité est
µ
la viscosité du fluide
y
U
=
µτ
tandis que dans la couche turbulente le transfert de quantité de mouvement entre
couches multiplie ce coefficient,
µ
T
est beaucoup plus élevé que
µ
:
y
U
T
=
µτ
.
On appelle ce coefficient
µ
T
: « viscosité turbulente ».
II-3
Comportement général de la couche limite
II-3-1 Rugosité
1°) Régime turbulent lisse :
4
l
δ
ε
< (poli aérodynamique)
La sous couche limite laminaire amorti les aspérités donc la couche turbulente ne subit
pas les perturbations dues aux aspérités. Du point de vue de l’écoulement tout se passe
comme si la surface est parfaitement lisse d’où la dénomination de poli aérodynamique. Le
coefficient de frottement ne dépend que du Reynolds. La théorie de Blasius donne :
2,0
074,0
=
x
RCf
5
Christian Guilié septembre 2014
2°) Transition turbulent lisse - turbulent rugueux :
l
δε
La sous couche limite devient instable et commence à décoller aux sommets des
bosses des aspérités.
3°) Régime turbulent rugueux :
l
δε
8>
La sous couche colle au sommet de chaque aspérité ce qui crée un sillage dont la
trainée (voir aérodynamique) est proportionnelle à
2
2
1U
ρ
. Le frottement à la paroi est
principalement à la somme des trainées de ces petites aspérités et non plus au cisaillement
dans la couche limite. Le coefficient de frottement ne dépend donc plus que de la hauteur
ε
de
la rugosité et plus du nombre de Reynolds.
Ces constatations corroborent les mesures de trainée sur la plaque plane et les
coefficients de perte de charge linéaire dans les conduites :
1 / 7 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !