1
POLY-PREPAS
Centre de Préparation aux Concours Paramédicaux
-Section i-Prépa -
2
Enoncé des exos du chapitre 12 : Circuits LC et RLC
exercice 1 :
3
exercice 2 :
Le condensateur ci-dessus, de capacité C est initialement charsous une tension U0
A l'instant t = 0, on ferme l'interrupteur K. A cet instant l'intensité i0 du courant est nulle. L'intensité du
courant i(t) est comptée positivement quand le courant circule dans le sens indiqué (courant de
décharge du condensateur).
1. Etablir l'équation différentielle à laquelle obéit la tension uc aux bornes du condensateur.
2. On se limite au cas où la sistance r de la bobine est nulle.
a) Que devient dans ce cas l'équation différentielle ?
b) Donner l'expression de la pulsation propre w0 des oscillations, de leur fréquence propre et
enfin de la période propre T0. Montrer que la période a bien la dimension d'un temps, par
une étude dimensionnelle.
c) terminer une solution de la forme :()= (+)de cette équation
différentielle qui vérifie les conditions initiales.
d) Donner l'expression générale de l'énergie stockée dans le condensateur et de celle stockée
dans la bobine en fonction de C, U0,ω
e) Etablir alors l’expression de l’énergie électro-magnétique du circuit en fonction de C et
U0;en déduireque le système est conservatif
f) Etablir l'expression de l'intensité maximale Imax du courant circulant dans le circuit en
fonction de C, L et U0.
exercice 3 :
1. La relation charge intensité pour un condensateur scrit : i=-dq/dt ; q=di/dt ; i = dq/dt
2. Soit un couple RC, si on double la résistance du conducteur ohmique, le temps de charge : est
doublé; est divisé par deux.
3. Lors de la décharge d'un condensateur dans un conducteur ohmique, la courbe représentant les
variations de la tension aux bornes du condensateur en fonction du temps est : une droite
linéaire ; une droite affine ; une courbe exponentielle.
4. Un condensateur de capacité C= 2,2 mF chargé sous une tension U=1,5 V emmagasine une
énergie de : 2,5 mF ; 2,5 mJ ; 5,0 mJ. ; 1,7 mJ
5. Soit un condensateur de capacité C= 10 mF. Il est d'abord charsous une tension U0=6,0 V
puis branché aux bornes d'un dipôle RL ( R= 50 W, L= 100 mH) Un circuit oscillant RLC est
constitué.
A) L'énergie initialement stockée dans le condensateur est de : 30 mJ ; 0,18 mJ ; 360 mJ
4
B) L'énergie stoce dans le condensateur va être : intégralement transmise à la bobine
; partiellement transmise à la bobine ; la bobine va emmagasiner une énergie
supérieure à celle que contenait le condensateur
C) Lors de la constitution du circuit RLC, on observe des pseudo-oscillations de pseudo-
riode : 6,3 ms ; 6,3 m s ; 1 m s ; 1 ms
D) Si on quadruple la valeur de L, la pseudo-période des oscillations sera : multiple
par 4 ; multipliée par deux ; divisée par 4.
exercice 7 :
A la date t=0 on branche aux bornes d'un dipôle RL un condensateur de capacité C charsous une
tension E. Il se produit des oscillations pseudo-périodiques dans le circuit.
Que représente la pseudo-période des oscillations ? (Répondre par VRAI OU FAUX)
1. La durée séparant deux dates successives où la tension aux bornes du condensateur est
maximale et de même valeur.
2. La durée au bout de laquelle le condensateur a perdu 63 % de sa charge initiale.
3. La durée séparant deux dates successives où la tension aux bornes du condensateur est nulle.
4. L'intervalle de temps séparant deux dates successives où l'énergie emmagasinée dans la bobine
est maximale.
5. L'intervalle de temps séparant deux dates successives où l'intensité du courant dans le circuit
est maximale.
1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !