Étude de la constante de raideur d`une molécule organique linéaire

Jean-Jacques Greffet,
François Marquier
TD n˚3
Étude de la constante de raideur d’une
molécule organique linéaire
Il est possible de fixer des particules sphériques de silice dont le rayon est 200 nm aux deux
extrémités de molécules biologiques. Cela a par exemple été réalisé pour la myosine qui est la
protéine responsable de la contraction des muscles. Ces particules peuvent être manipulées indi-
viduellement1de sorte que l’on sait tirer sur les deux extrémités d’une molécule pour l’allonger.
On peut alors définir la constante de raideur d’une molécule en reliant son allongement à la
force appliquée. Les ordres de grandeur des allongements sont typiquement dans la gamme de la
dizaine de nanomètres, les forces sont dans la gamme du pico newton.
Fig. 1 – Exemples de mesures effectuées par le groupe de J. Molloy au National Institute for
Medical Research à Londres.
Le système étudié est une molécule. Elle est modélisée par un ressort de constante de raideur K
(la constante de Boltzmann est notée kB), avec une masse m(une nanosphère) à une extrémité,
l’autre étant fixe.
1Pour manipuler les particules sphériques, on utilise des "pinces" optiques. Il s’agit de faisceaux lasers focalisés.
Les sphères se placent alors au point d’intensité maximale. On peut ainsi déplacer les particules et donc les
molécules qui y sont attachées. Un traitement chimique (fonctionnalisation) de la surface de la particule permet
d’accrocher sélectivement les molécules que l’on souhaite étudier.
1
1) Rappeler l’expression de l’énergie quantifiée de la molécule. On notera : ω=pK/m.
2) La molécule est en solution dans un solvant de température Tqui joue le rôle d’un thermostat.
ζétant la fonction de partition de la molécule, quelle est la probabilité Prd’un état rd’énergie
Er?
3) On se place dans le cadre de l’approximation classique. Quelle est la condition de validité ?
4) Un état de la molécule est alors caractérisé par son allongement xet son impulsion p=mdx/dt.
Rappeler l’expression classique de son énergie en fonction de xet p, et en déduire la fonction de
partition ζde la molécule. On utilisera l’espace des phases construit sur xet ppour évaluer la
densité d’états. On donne : Z+
−∞
eαu2du=rπ
α
5) Calculer la valeur moyenne de l’allongement de la molécule.
6) Montrer que la valeur moyenne de x2peut s’écrire :
x2=
2
β
ln ζ
K
En déduire la valeur moyenne de l’énergie potentielle. Calculer de même la valeur moyenne de
l’énergie cinétique. Quel commentaire vous suggèrent ces deux résultats ?
7) Quelle est la contribution de cette vibration à la capacité calorifique de la molécule ?
8) Calculer l’écart-type σxde l’allongement x.
9) On peut mesurer cet écart-type de la position de la molécule en éclairant la nanosphère et en
suivant son déplacement à l’aide d’un microscope. Le diagramme du bas de la figure 1 permet
en effet de l’estimer grossièrement : σx= 10 nm, à la température ambiante (300 K). En déduire
la valeur de la raideur K. (Ce type de mesure est utilisé pour étudier à l’échelle moléculaire les
mécanismes de fonctionnement des muscles.)
Vérifier a posteriori la condition de validité de la question I.3, sachant que la masse d’une
nanosphère de silice est : m= 8.1017 kg.
2
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !