Exploring the epoch of reionization through the 21 cm radiation
The reionization epoch starts at the birth of the first stars. We do not know exactly when the first stars are formed,
this is not given in the simulations, by lack of dynamics and spatial resolution. The end of the reionization should
occur at redshift z 6, as shown by the observation of remote quasar absorption spectra, revealing a completely
ionised IGM after this redshift. Observing and exploring the IGM during the reionization epoch is very important to
reveal how the first stars and first quasars were formed.
The 21 cm radiation*, emitted at the transition between the singlet and the triplet state of the hydrogen atom in its
fundamental energy state, is excellent to explore the IGM during the reionization, because the IGM is composed of
75% of hydrogen and 25% of helium (in mass). Since the 21 cm radiation is optically very thin, it propagates
through dust and gas clouds without being absorbed or scattered. It is very useful to study the topology and other
properties of the IGM during the reionization. In the next decade, large metric radio-interferometers (LOFAR,
MWA, SKA) will start to operate and observe the 21 cm signal at these high redshifts (z=6-11).
Figure 2 : Les cartes de signal à 21 cm prédites par les simulations, à 3 époques différentes (z=10, 8.5 et 7.6).
Chaque panneau correspond à une région 1° par 1° du ciel, et l'épaisseur de la tranche est 2 Mpc. Le signal à 21
cm est observé par la différentielle de la température de brillance Delta-Tb, en mK. Le signal est soit en émission
(dTb > 0 mK) soit en absorption (dTb < 0 mK). Une fois que l'IGM est ionisé par les sources UV, il n'y a plus
d'atome d'hydrogène, et plus de signal 21 cm, d'où la prédiction 0mK dans la région ionisée orange, délimitée par le
contour noir. Pendant les premières phases de la réionisation, le signal est observé en régime d'absorption forte
(par le gaz d'hydrogène plus froid que le CMB), en particulier autour des sources.
Modelling the signal through numerical simulations prior to the observation is an essential step in order to optimize
the design of instruments and the data analysis. The team of Paris Observatory predicted the 21 cm signal during
the reionization through radiative transfer simulations. Physical knowledge is required of many parameters of the
IGM as well as the source properties, to derive the 21 cm signal : the density field, the velocity, the ionization
fraction, the kinetic temperature, the local flux of Lyman-alpha photons of hydrogen, etc.... All these elements were
estimated with less approximations then previous studies, to produce a more exact map of the 21 cm signal
during reionization. This showed that the inhomogeneous local Lyman alpha flux multiplies the amplitude of the 21
cm signal by a factor 10, with respect to previous work assuming homogeneous Lyman alpha photons flux. These
results imply that observations of the early reionization (z>10) will probably benefit from a higher signal-to-noise
value than during later stages. In addition, different spectra of ionizing sources were considered, modifying the
statistical properties of the 21 cm. Observations will constrain the nature of the first sources.
* Note : In fact, this is a forbidden transition which has very poor probability, but we can observe it thanks to the
large amount of hydrogen atoms on each line of sight.
Reference
Copyright © Observatoire de Paris centre de recherche et enseignement en astronomie et astrophysique relevant du Ministère de l'Enseignement supérieur et de la Recherche.Page 3/4