DEVOIR
Durée : 2 heures
La calculatrice est autorisée. La présentation sera notée sur 4 points.
Chaque partie sera rédigée sur une copie différente.
Partie numérique
Exercice I : (4,5 pts)
On considère les expressions numériques suivantes :
7 2 5
3 3 6
A  
5 2 2
2
(10 ) 300 10
5 10
B

   
 

Calculer A, et donner le résultat sous la forme d’une fraction irréductible.
Calculer B, et exprimer le résultat en écriture scientifique.
Calculer C, et donner le résultat sous la forme d’une fraction irréductible.
Exercice II : (5 pts)
On considère l’expression suivante :
(2 3)² (2 3)(2 )F x x x  
1) Développer et réduire l’expression F.
2) Factoriser F.
3) Calculer la valeur de l’expression F sous la forme la plus simple possible pour
.
4) Résoudre l’équation :
0F
.
Exercice III : (2,5 pts)
On considère l’expression B = (7x+4) (2x +5) + (4x + 3)² - (2x-2)²
1) Factoriser B. (on pourra factoriser en deux étapes).
2) Résoudre l’équation (2x+5) (13x+5) = 0.
Partie géométrie
1) Quelle est la nature du triangle ABC ?
2) Le point E est le point de [AC] tel que AE = 4 cm.
La médiatrice de [EC] coupe [EC] en H, [BC] en J et (BE) en M.
a) Montrer que les droites (JH) et (AB) sont parallèles.
b) Montrer que HC = 2,5 cm.
c) Calculer la valeur exacte de JH et JC.
Exercice II : (4 pts)
Le dessin ci-contre représente la coupe d’une maison. Le triangle MAI est isocèle,
de sommet principal M. La droite perpendiculaire (AI) passant par M, coupe (AI)
en S. L’unité de longueur est le mètre. On sait que MS = 2,5 et AI = 11.
1) a) Calculer AS.
b) Calculer la valeur arrondie à 0,1 degré près, de la mesure de l’angle
. (Si
besoin, on pourra utiliser cette valeur pour l’angle
pour la question
suivante).
2) Dans le toit, il y a une fuite en N qui fait une tache en O. La droite (NO) est
perpendiculaire à la droite (AI) et AO = 4,5.
Calculer AN. On donnera la valeur arrondie à 0,1 près.
Problème (12 pts)
On donne :
- un cercle (C) de centre O et de rayon 6cm ;
- un diamètre [AB] de ce cercle (C) ;
- le point N du segment [OB] tel que BN = 4cm ;
- le point M situé à 3,2cm de B et tel que
le triangle BMN est rectangle en M.
(Cette figure n’est pas en vraie grandeur. )
1) a) Calculer la longueur du segment [MN].
b) Calculer la mesure de l'angle 
(arrondir au degré près).
La droite (BM) recoupe le cercle (C) en P.
2) a) Démontrer que le triangle BPA est rectangle en P.
b) En déduire que les droites (PA) et (MN) sont parallèles.
3) On admet maintenant que le triangle BPA est un agrandissement du triangle BMN.
a) Calculer le coefficient d'agrandissement.
b) Calculer BP.
c) Calculer l'aire du triangle BMN et en déduire l'aire du triangle BPA.
4) Soit E le milieu de [BN]. Démontrer que les droites (PO) et (ME) sont parallèles.
5) La droite (PO) recoupe le cercle (C) en K et la droite (PN) coupe la droite (BK) en I.
On sait que : lorsqu'un point appartient à une médiane d'un triangle et est situé aux deux tiers de cette médiane en
partant du sommet, alors ce point est le centre de gravité du triangle.
Ecrire le rapport
Error!
sous forme d’une fraction irréductible, puis démontrer que I est le milieu du segment [BK].
N
O
M
A
B
(C)
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !