ETUDE COMPAREE DE LA DIFFUSION DES RAYONNEMENTS X ET VISIBLES
E. Tollens1, 2, C. Zerrouki 1, 2, M. Chassevent1, N. Fourati1, et J. J. Bonnet1
1 Laboratoire de Physique / Cnam, 2, rue Conté F-75003 Paris, France.
2 BNM-INM / Cnam, 292, rue Saint-Martin F-75003 Paris, France.
Résumé :
Ce travail expérimental concerne l’étude et la comparaison des densités spectrales de
puissance (dsp) de la rugosité, obtenues à partir des relevés du rayonnement diffusé (optique à
λ = 632,8 nm et X à λ = 0,154 nm). Pour cela, une même théorie vectorielle de la diffusion
est utilisée pour caractériser trois échantillons : un en silicium, un autre en platine iridié et un
en alacrite (ces deux derniers sont des alliages utilisés en métrologie des masses).
Une étude de l’effet de l’angle d’incidence sur l’allure des dsp a montré que, pour les X,
seules des incidences rasantes inférieures à l’angle critique permettent de sonder les mêmes
couches "superficielles", les mêmes que l’optique. La prise en compte des différents
phénomènes physiques propres à l’interaction rayonnement X-matière a permis d’obtenir des
dsp X et optique comparables. Ceci constitue une validation des mesures de rugosité dans le
domaine des rayonnements X, et permet l’extension de la fenêtre des fréquences spatiales
accessibles aux mesures.
1. Introduction :
Les méthodes optiques de caractérisation de la rugosité superficielle sont de plus en plus
utilisées (pour leur caractère non destructif) dans de nombreux domaines : optoélectronique,
mécanique de précision ou encore la métrologie des masses [1]. Les techniques basées sur la
diffusion de la lumière présentent l’avantage d’une utilisation relativement simple, en contre
partie d’une théorie qui l’est beaucoup moins. Considérées comme des méthodes de référence,
celles-ci souffrent néanmoins, à l’instar d’autres techniques, du caractère relativement limité
du domaine de fréquences spatiales accessibles aux mesures [2]. L’utilisation de
rayonnements de diverses longueurs d’onde permet d’étendre le domaine fréquentiel spatial
accessible expérimentalement. Les rayonnements X constituent ainsi une alternative
intéressante qui permettrait d’atteindre des domaines réservés jusque là aux seuls microscopes
à champ proche ou à force atomique. L’utilisation des rayons X nécessite avant tout une
validation par comparaison aux mesures optiques.
Dans cet article, nous présentons deux méthodes de caractérisation de la rugosité
superficielle. Toutes deux, globales, sont basées sur la mesure du rayonnement diffusé, visible
(λ = 632,8 nm) pour l’une et X ( λ = 0,154 nm) pour l’autre. Les deux techniques reposent sur
la même théorie vectorielle de la diffusion, donnant accès à une caractéristique de la rugosité
de la surface, la densité spectrale de puissance (dsp).
L’étude expérimentale a été menée sur deux sortes de matériaux : des alliages métalliques
utilisés en métrologie des masses (platine iridié à 10 % d’Ir et Alacrite, alliage quaternaire à
base de cobalt) et des surfaces cristallines (wafer de silicium).
Après une brève présentation des deux dispositifs de mesure, nous expliciterons les conditions
expérimentales qui permettent dans un premier lieu de sonder les mêmes couches
superficielles, et ensuite de comparer les dsp X et optique, ceci nécessitant une prise en
compte de la nature de l’interaction rayonnement-matière, très différente selon la longueur
d’onde utilisée. Nous conclurons par énoncer les conditions de validité des mesures dans le
domaine des rayonnements X par comparaison aux mesures optiques.
2. Dispositifs expérimentaux
Les deux rugosimètres, X et optique, ont une configuration expérimentale très voisine. Le
premier possède toutefois plus de degrés de liberté, autorisant ainsi d’avantage de modes de
mesure (notamment la possibilité d’effectuer des mouvement couplés ou indépendants de la
source et du détecteur) [3]. Le principe sur lequel se fondent ces deux dispositifs est basé sur
une théorie vectorielle de la diffusion (ARS pour Angle Resolved Scattering). Parfaitement
adaptée au domaine optique, cette théorie permet de relier la rugosité d’une surface sondée
par un faisceau incident, au flux qu’elle diffuse dans le plan d’incidence [2, 4-6]. Le schéma
de principe de ces deux dispositifs de mesure de diffusion est illustré par la figure suivante où
sont représentés quelques paramètres géométriques intervenant dans les calculs.
surface
x
θ0
+ θ
Détecteur
z
Source
Faisceau
incident
Réflexion
spéculaire
surface
x
θ0
+ θ
Détecteur
z
Réflexion
diffuse
Source
Faisceau
incident
Réflexion
spéculaire
surface
x
θ0
+ θ
Détecteur
z
Source
Faisceau
incident
Réflexion
spéculaire
surface
x
θ0
+ θ
Détecteur
z
Réflexion
diffuse
Source
Faisceau
incident
Réflexion
spéculaire
Réflexion
spéculaire
Figure 1. Schéma de principe : Géométrie de l’expérience.
Si
φ
0 est le flux incident de longueur d’onde λ, éclairant une surface sous l’angle
d’incidence
θ
0 (par rapport à la normale à la surface) , la répartition angulaire du flux diffusé
par unité d’angle solide dd
φ
est donnée par l’expression qui suit :
d
dwS k
oo
φ
φ
π
λθ
=
1
4
21
4
2
cos ()
2
(1)
Le terme w, dit facteur optique, dépend de la permittivité diélectrique du matériau
sondé, de la polarisation des rayonnements incident et diffusé et des angles d’incidence et de
diffusion. L’autre,
()
2
kS , est caractéristique de la rugosité de la surface. Il représente sa
densité spectrale de puissance (dsp) (appelée également spectre de rugosité). Cette dernière,
exprimée dans l’espace réciproque, est la transformée de Fourier de la fonction
d’autocorrélation (fac) des aspérités de surface [7-10].
k représente la différence entre les projections, sur la surface, des vecteurs d’onde
des rayonnements incident sous
θ
o et diffusé dans la direction
θ
:
)sin(sin
20
θθ
λ
π
=== kkkx
G
(2)
Dans la pratique, le flux incident
φ
0 correspondra à une intensité incidente mesurée Io
et le flux diffusé à une mesure d’intensité diffusée Idet dans l’angle solide . Le relevé de ces
intensités permet alors d’obtenir une fonction empirique S² qui est théoriquement équivalente
à
()
2
kS .
()
4
det
2
2
cos
42
=
 =∆


o
o
I
Iw
Sk
θ
λ
π
(3)
Notons que dans les relations précédentes, les angles sont définis selon les notations
optiques, c’est à dire par rapport à la normale à la surface. Il faudra alors en tenir compte pour
l’application en X où, conventionnellement, les angles sont définis par rapport au plan de la
surface.
3. Résultats expérimentaux et discussion
La diffusion lumineuse est une méthode de référence en matière de qualification et de
quantification de la rugosité. Cette dernière nous permet d’obtenir, au moyen de la relation 3,
la densité spectrale de puissance de rugosité en fonction de la pulsation (ou de la fréquence)
spatiale. Cette fonction, caractérise la rugosité des couches superficielles des échantillons,
indépendamment de l’angle d’incidence.
Le rayonnement X, plus énergétique que les rayonnements visibles, va pénétrer dans le
matériau sur une profondeur variable en fonction de l’incidence utilisée. Il est donc important,
dans un premier temps, d’étudier l’effet de l’incidence du rayonnement X sur les dsp
déterminées, et de choisir ensuite la configuration expérimentale X permettant de sonder
l’échantillon suffisamment superficiellement pour se placer dans des conditions comparables
à l’optique.
3.1 Choix de l’incidence du rayonnement X :
Deux surfaces métalliques ont été choisies pour réaliser cette étude : une d’alacrite
XSH, alliage quaternaire à base de cobalt (54%) utilisé en métrologie des masses et une autre
de platine iridié. Ces deux matériaux présentent un angle critique propre relativement élevé
(0.38° et 0.56° respectivement) par comparaison à l’angle critique du silicium (0.21°).
Pour la surface d’alacrite, les mesures sont relevées pour quatre incidences 0.3°, 0.38°, 0.45°
et 0.3°. Les dsp obtenues pour ces différentes configurations sont présentées sur la figure 2.
1,0E+04
1,0E+05
1,0E+06
1,0E+07
1,0E-03 1,0E-02
k (nm-1)
S² (nm4)
incidence 0,3°
incidence 0,38°
incidence 0.45°
incidence 0.6°
Figure 2. Echantillon d’alacrite : Relevés de dsp en fonction de la pulsation spatiale k, pour
différentes incidences du rayonnement X
On remarque sur la figure précédente (fig. 2) que la pente des dsp change selon
l’incidence du rayonnement. La comparaison de ces dernières amènerait à conclure que la
rugosité décroît au fur et à mesure que l’angle d’incidence augmente, ce qui est évidemment
impensable, la rugosité étant une propriété de la surface et ne dépend nullement des
conditions expérimentales d’illumination [6]. En fait, ce comportement est dû à la profondeur
de pénétration des rayons X qui croît de quelques nanomètres à quelques micromètres avec
l’angle d’incidence, et ceci relativement brutalement autour de l’angle critique du matériau.
Cette pénétration s’accompagne bien évidemment d’une absorption croissante, notamment au
delà de l’angle critique. Par conséquent, seules des incidences X très rasantes (inférieures à
l’angle critique) permettant de sonder uniquement les couches superficielles, donnent accès à
des dsp représentatives de l’état de surface.
Nous avons essayé de vérifier ce comportement (variation des dsp avec l’angle
d’incidence) pour une gamme plus étendue de pulsations spatiales, sur un matériau moins
complexe que l’alacrite et offrant un angle critique différent. Le choix du platine iridié (autre
matériau de référence en métrologie des masses) avec un angle critique de 0.56° s’est imposé
naturellement du fait de l’existence d’un composé majoritaire (90% de Pt). De plus, le platine
et l’iridium possèdent des propriétés optiques très proches (même facteur optique w). Comme
pour l’alacrite, quatre incidences ont ainsi été utilisées : 0.3°, 0.4°, 0.55° et 0.7°. Les résultats
obtenus (les dsp) sont présentés sur la figure 3.
1E+03
1E+04
1E+05
1E+06
1E+07
1E-04 1E-03 1E-02
k (nm-1)
S² (nm4)
incidence 0.3 °
incidence 0.4 °
incidence 0.55 °
incidence 0.7 °
Figure 3. Echantillon de platine iridié : Relevés de dsp en fonction de la pulsation spatiale k,
pour différentes incidences du rayonnement X
Un effet de l’angle d’incidence apparaît pour le platine iridié de la même manière qu’il
l’a été observé sur l’alacrite. On note cependant que pour les faibles incidences, 0.3° et 0.4°
(toutes deux inférieures à l’angle critique), les dsp déterminées demeurent relativement
comparables. L’incidence à 0.3° pourra être privilégiée par rapport à 0.4° car elle présente
l’avantage de sonder une surface plus étendue.
L’incidence X sera donc à choisir inférieure à l’angle critique du matériau à étudier
pour n’en sonder que les couches superficielles
3.2 Comparaison de résultats de diffusion X et optique :
L’interaction du rayonnement X avec le matériau donne lieu à différents phénomènes :
effet photoélectrique (prépondérant à l’énergie utilisée), diffusion inélastique (négligeable
dans notre cas) et diffusion élastique. Seule cette dernière nous intéresse dans l’application de
la théorie vectorielle de la diffusion. Contrairement au rayonnement visible, seule une petite
partie du rayonnement X incident est diffusée. Un facteur correctif tenant compte des sections
efficaces de chaque phénomène est donc apporté aux mesures X avant de les comparer à
celles obtenues en optique. Les résultats de la comparaison X–optique présentés ici ne
concernent que le platine iridié et le silicium cristallin. Les sections efficaces de l’iridium et
du platine étant relativement proches, le facteur global du matériau est relativement
indépendant des proportions de chacun de ces constituants.
D’après les dimensions du faisceau et son utilisation en incidence rasante, le
rayonnement X permet d’étudier des zones relativement larges (aire d’un site allant de 100 à
200 mm2 environ, pour des incidences comprises entre 0.3° et 0.4° par exemple). Le
rugosimètre optique délivre par contre des informations qui concernent des sites moins
étendus (aire voisine de 1,5 mm2). Pour tenir compte de cette grande différence, plusieurs
sites sont analysés au moyen du rugosimètre optique pour être comparés à un seul site X. Les
positions de ces sites sont choisies de manière à obtenir un échantillonnage représentatif de la
rugosité de la surface de l’échantillon. La figure 4 représente les relevés d’une dsp X pour
plusieurs dsp optiques, en fonction du vecteur d’onde k. Les mesures X sont effectuées sous
une incidence rasante de 0.2°, bien inférieure à l’angle critique du platine iridié, suffisamment
faible pour sonder une surface assez large. En utilisant le facteur correctif qui prend en
compte le phénomène d’absorption, les dsp obtenues sont trouvées comparables pour les deux
rayonnements. Indépendamment de l’utilisation de ce facteur (constant sur tout le domaine
des fréquences spatiales), l’allure des dsp est reproduite fidèlement (même pente). Ceci traduit
le fait que les deux rayonnements sondent les mêmes couches superficielles et que ces dsp
sont représentatives d’une même famille de défauts (rugosités
δ
du même ordre de grandeur
pour une même famille de longueurs d’ondes spatiales). Nous noterons également la relative
homogénéité de cet échantillon au vu de la faible dispersion des résultats optiques.
1 / 7 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !