RESUME
Cette thèse constitue une contribution à l'étude des systèmes de conversion d'énergie
électrique avec composants électrochimiques. La démarche retenue, systémique, exploite le
caractère unifiant du formalisme Bond Graph pour modéliser tous les composants et les
systèmes étudiés. Un état de l'art des composants électrochimiques de stockage et de
production décentralisée d'énergie électrique met en exergue des phénomènes communs en
vue d'une « modélisation générique orientée système ». Les modèles de piles à combustible
(PAC) à oxyde solide (SO) ou à membrane polymère échangeuse de protons (PEM) et
d'accumulateurs Lithium-Ion, spécifiquement développés en collaboration avec des
spécialistes de l'électrochimie, représentent explicitement au niveau macroscopique les
phénomènes de conversion, réactionnels et dissipatifs, couplés dans les domaines chimique,
thermodynamique, électrique et thermique. Ces modèles sont exploités pour étudier la
modularité des composants, notamment les déséquilibres électriques et thermiques dans les
associations série ou parallèle de piles à combustible. La démarche est ensuite appliquée à
l'étude des architectures et de la gestion d'énergie de groupes électrogènes à PAC-PEM et à
stockage en accumulateurs ou en supercondensateurs. Les notions de pilotage de la PAC « en
tension », « en courant » ou « au fil de la consommation » sont définies et étudiées. Des essais
de caractérisation et de fonctionnement menés sur des dispositifs expérimentaux spécialement
réalisés valident les résultats théoriques. Pour finir, une étude originale de gestion d'énergie
globale, menée sur le véhicule solaire « Solelhada », illustre la pertinence de la démarche sur
un système complexe, photovoltaïque, autonome et mobile, modélisé dans son ensemble.
Mots Clés
• Modélisation • Pile à combustible
• Systémique • Accumulateur Lithium-Ion
• Bond Graph • Groupe électrogène
• Stockage électrochimique • Générateur photovoltaïque
ABSTRACT
This thesis is a contribution to the study of electric power conversion systems including
electrochemical devices. A systemic approach draws advantage of the unified Bond Graph
formalism in order to model every component as well as the whole system. A state of the art
of electrochemical devices for decentralised electric energy generation and storage put
emphasis on common phenomena with the aim of developing “system oriented” generic
models. Solid Oxyde and Proton Exchange Fuel Cells (SOFC, PEMFC), as well as Lithium