PROGRAMME DE KHÔLLES Semaine 11 : du 5 au 9 décembre
Sciences Physiques - ISEP P1A 2016/2017
Même si le chapitre M1 n’apparaît pas dans ce programme de révision, il va de soi qu’il doit
être maîtrisé ...
M2 : Repérage cylindro-polaire d’un mouvement
Suggestion de questions de cours
Quelles sont les coordonnées polaires d’un point M?
Exprimer les vecteurs position, vitesse, vecteur déplacement élémentaire et accélération dans la base
polaire.
Interpréter géométriquement les composantes vecteur déplacement élémentaire dans la base polaire.
Mêmes questions dans le cas du repérage cylindrique.
Dans le cas d’un mouvement circulaire, exprimer les composantes des vecteurs vitesse et accélération
dans la base polaire. Montrer que la composante radiale de la vitesse peut s’exprimer en fonction de
la norme de la vitesse et du rayon.
Établir l’équation différentielle du mouvement du pendule simple. La résoudre dans le cas des
oscillations de faible amplitude.
M3 : Approche énergétique
Peu d’exercices traités encore (voir cahier de textes)
Suggestion de questions de cours
Définir la puissance et le travail élémentaire d’une force. Quand est-ce qu’une force est motrice ?
résistante ? ne travaille pas ?
Définir le travail d’une force s’appliquant à un point
M
se déplaçant entre un point
A
et un point
B
sur un chemin donné.
Montrer que le travail du poids d’un point matériel de masse
m
évoluant depuis l’altitude
zA
vers
l’altitude zB(axe Oz vertical orienté vers le haut) s’écrit : W=−mg∆z=−mg(zB−zA).
Dans le cas du point matériel, démontrer le théorème de la puissance cinétique. En déduire le
théorème de l’énergie cinétique.
Application du théorème de l’énergie cinétique pour une chute libre verticale (vitesse finale pour
une chute depuis une hauteur h ; altitude maximale pour une vitesse initiale donnée, ...)
Dans le cas d’un système de points matériels, comment définit-on l’énergie cinétique du système ?
En déduire l’expression du théorème de la puissance cinétique en distinguant la somme des puissance
des forces extérieures Pext et la somme des puissances des forces intérieures Pint.
En déduire l’expression du théorème de l’énergie cinétique pour le système de points.
Établir que pour calculer le travail total du poids sur un système de points, on peut assimiler celui-ci
à un point matériel de masse mtot et confondu avec son centre de masse G.
Dans le cas d’un solide en translation, expliquer comment se simplifie l’expression du théorème de
la puissance cinétique et de l’énergie cinétique.
Définir une force conservative (ou dérivant d’un potentiel) et l’énergie potentielle associée (faire le
1N.Gaudouen