PCSI%Interrogation%de%cours%n°4% 05/11/2013%
%
CHAPITRE)N°9%:%Introduction%au%monde%quantique.%
%
1. Dualité)onde)particule)
1.a Décrire%une%expérience%mettant%en%évidence%la%notion%photon.%
1.b Décrire%une%expérience%mettant%en%évidence%la%notion%d’onde%de%matière.%
1.c Remplir%le%tableau%:%
1.d L’aspect%corpusculaire%du%photon%ressort%d’autant%plus%que%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%.%
1.e Expérimentalement,% pour% voir% l’aspect% corpusculaire% de% la% lumière%
il%faut%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%.%
1.f Dans%une%situation%à%priori%corpusculaire%dont%la%dimension%caractéristique%est%L,%%
*%les%aspects%quantiques%peuvent%être%négligés%%si%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%.%%%%%
*%les%aspects%quantiques%seront%importants%si%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%.%%
%
2. Interprétation)de)l’expérience)des)fentes)d’Young)
2.a. Les% particules% quantiques% sont% envoyées% une% à% une,% qu’observeWtWton%?% Comment% se%
manifestent%les%caractères%ondulatoire%et%corpusculaire%?%
2.b. La%probabilité%de%détecter%une%particule%en%un%point%est%proportionnelle%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%de%%%%%%%%%%%%%%%
n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%l’onde%en%ce%point.%
%
3. Fonction)d’onde)
3.a. La%fonction%d’onde%𝜓(𝑥,𝑡)%caractérise%%%%%%%%%%%%%%%%%%%%%%%%%%%%de%la%particule.%
3.b. La%probabilité%que%la%particule%se%trouve%à%l’instant%t%dans%le%volume%élémentaire%𝑑𝜏%autour%
du%point%M%est%𝑑𝑃 =%
3.c. Dans%l’expérience%des%fentes%d’Young%la%grandeur%qui%s’additionne%quand%on%superpose%les%
états%est%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%et%non%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%.%
%
4. Inégalité)d’Heisenberg)
4.a. Qu’est%ce%que%l’indétermination%quantique%?%
4.b. Cas% de% la% diffraction% par% une% fente% de% largeur%𝑎,% évaluer% un% ordre% de% grandeur% du% produit%
𝛥𝑥!𝛥𝑝!.%
4.c. Énoncer%le%principe%d’indétermination%d’Heisenberg.%
%
5. Énergie)cinétique)minimale)d’une)particule)quantique)confinée.)
Une%particule%quantique%se%déplace%le%long%de%l’axe%O!%confinée%dans%un%espace%de%largeur%l.%La%
particule%n’étant%soumise%à%aucune%force,%son%énergie%se%réduit%à%son%énergie%cinétique.%Montrer%
qu’une%particule%confinée%dans%un%volume%de%l’espace%de%taille%limitée%a%une%énergie%cinétique%
bornée%inférieurement.%
%
%