Spé ψ 2004-2005 page 1/4 Devoir n°3
Spé ψ 2004-2005 Devoir n°3
MÉCANIQUE DES FLUIDES
Tout résultat fourni dans l’énoncé peut être utilisé pour les questions ultérieures, même s’il n’a pas été démontré.
Il ne faudra pas hésiter à formuler tout commentaire qui semblera pertinent, même lorsque l’énoncé ne le demande
pas explicitement. Le barème tiendra compte de ces initiatives ainsi que des qualités de rédaction de la copie.
Les vecteurs sont notés en gras.
Partie I
CIRCULATION DE L'EAU DANS UNE CONDUITE.
On considère un tuyau cylindrique, de rayon R, de
longueur L, horizontal et parcouru par un fluide de
viscosité dynamique η. La pression sur l'axe du cylindre
est p1 à l'entrée et p2 à la sortie. On rappelle que η
intervient dans la force surfacique qu'exerce une partie d'un
fluide sur une autre de vitesse différente. Si l'écoulement se
fait suivant un axe x et la vitesse dépend de y (voir fi-
gure 1), cette force surfacique exercée par la partie de y le
plus grand sur celle de y le plus petit est :
fS = η
v
yeX
Les flèches symbolisent les vitesses à x donné pour différentes valeurs de y.
I-1) Pour savoir si l'écoulement est turbulent ou laminaire, on considère un nombre sans di-
mension d'autant plus grand que l'écoulement est plus turbulent : ce nombre est le nombre de Reynolds
que l'on notera RE. Il utilise les grandeurs physiques η, µ, la masse volumique du fluide, v, la vitesse
caractéristique de l'écoulement et , une longueur, elle aussi caractéristique de l'écoulement.
a) Dans le problème qui nous occupe, prend-on pour
l
le rayon R ou la longueur L ?
Expliquer pourquoi.
b) En faisant une analyse dimensionnelle de α.vβ.ηγ.µδ, avec δ = ±1, déterminer les
valeurs possibles des coefficients α, β et γ pour former un nombre sans dimension. Choisir alors leur
signe par un argument physique pour former le nombre de Reynolds.
I-2) On va considérer les coordonnées cylindriques axées sur le tuyau (voir figure 2). Un point
M est repéré soit par ses coordonnées cartésiennes (x, y, z), soit par ses cordonnées cylindriques (r, θ, x).
Le point m est le projeté de M sur le plan Oyz, H est le projeté de M sur Ox, r et θ sont les coordonnées
polaires de m dans ce plan Oy est l'axe polaire. L'axe Ox est l'axe du tuyau et le point O est à son
entrée (la pression y est donc p1).
On va considérer un écoulement laminaire permanent suivant l'axe du tuyau. La pesanteur sera
gligée. On supposera que la vitesse est de la forme : v(M) = v(r) eX.
x
z
Figure 2
Spé ψ 2004-2005 page 2/4 Devoir n°3
a) Indiquer qualitativement comment la pesanteur intervient dans ce problème et
pourquoi on la néglige.
b) Faire un bilan de force sur un élément de volume cylindrique de fluide autour du point
M de coordonnées (r, θ, x).
c) En appliquant la relation fondamentale de la dynamique, montrer que, dans les
conditions de l’écoulement, la pression ne dépend pas de r et de θ.
d) Montrer que
dp
dx
est indépendant de x. En déduire l’expression de p en fonction de x et
des paramètres p1, p2 et L.
e) Déterminer v(r) et en déduire la vitesse moyenne vM et le débit volumique DV dans le
cylindre. f) En faisant une analogie avec lélectrocinétique, finir la sistance hydraulique du
tuyau, notée K. En déduire son expression en fonction des caractéristiques du tuyau et du liquide.
g) On considère l'eau se trouvant à l'instant t dans le tuyau élémentaire horizontal de
longueur L et d'épaisseur dr. Déterminer le travail élémentaire des forces de pression qui s'exercent sur
ce système entre t et t + dt. En déduire PP, la puissance des forces pressantes qui s'exercent sur le liquide
contenu dans l'ensemble du tuyau et PV, la puissance dissipée par viscosité.
Écrire PV en fonction de K et du débit volumique DV.
I-3) On va appliquer les relations précédentes à un réseau de distribution d'eau domestique. Ce
type de circuit est alimenté par des châteaux d'eau qui assurent la mise en pression du réseau. On donne
g = 10 m.s–2, l'accélération de pesanteur et, pour leau, η = 10–3 Pl et µ = 1000 kg.m–3.
a) Quel est l'ordre de grandeur de la pression qui peut être attendue dans une canalisation
au pied d'un château d'eau de 25 m de haut. On supposera que le débit d'eau dans la canalisation est
suffisamment faible pour ne pas perturber le champ de pression dans le château d'eau.
b) Soit une conduite d'eau de 100 m de longueur et de section 1 cm2 partant du pied de ce
château d'eau. L'autre extrémité de la canalisation est à l'air libre. Quel débit peut-on attendre en sortie
en supposant que la relation précédemment établie s'applique bien ? Quelle est la vitesse maximale
atteinte dans la canalisation?
c) Quelle est la puissance dissipée par viscosité ? Sachant que pour l'eau, la capacité
thermique vaut c = 4,18 J.K–1.g-1, estimer l'élévation de température produite si l'eau récupère toute
l'énergie dissipée. Conclure.
d) Que vaut le nombre de Reynolds pour cet écoulement? Conclure.
e) Dans une maison, on souhaite obtenir des débits assez importants, par exemple pour
remplir une baignoire. Cependant, dans certaines installations anciennes, on n'obtient pas forcément
satisfaction. On dit parfois qu'on « manque de pression » Qu'est-il préférable de faire d'un point de vue
technique pour assurer une alimentation plus rapide? Sur quel paramètre physique vaut-il mieux jouer.
Qu'est-ce qui peut altérer à la longue la qualité des canalisations en terme de débit?
Partie II
LE RESSAUT HYDRAULIQUE
Le ressaut hydraulique est un phénomène que la plupart
d’entre nous a observé dans un évier de cuisine : leau du jet qui
frappe verticalement lévier s’étale d’abord radialement en une mince
nappe circulaire, de vitesse élevée. Pour une certaine valeur R de la
distance au jet, lépaisseur de la nappe augmente brutalement et sa
vitesse diminue.
La zone de discontinuité est ce qu’on appelle le ressaut
hydraulique. Ce problème de mécanique des fluides avec des
conditions aux limites libres inclut plusieurs aspects : le profil du flot
dans la région laminaire et dans la gion turbulente, le mécanisme du ressaut, la dissipation dénergie
dans son voisinage et la pendance de R avec, par exemple, la vitesse dimpact et le débit volumique
Spé ψ 2004-2005 page 3/4 Devoir n°3
du jet, la densité et la viscosité du fluide. On considère dans ce problème quelques aspects simplifiés de
cette dernière question : la position R du ressaut.
On modélise le système comme indiqué sur la fig. 1. Un
point du fluide est repéré en coordonnées cylindriques d’axe vertical
Ox. On note h(r) la hauteur de la nappe fluide et g laccélération de
la pesanteur. Le phénomène, de symétrie cylindrique, est caractérisé
par une discontinuité de la hauteur du fluide en r = R, position du
ressaut. Pour ε > 0, on note h1 = h(Rε) et h2 = h(R + ε) les
hauteurs immédiatement avant et immédiatement après la
discontinuité. L’ensemble est dans l’air, à la pression
atmosphérique.
II-1) Première modélisation : écoulement parfait
Dans un premier temps, le ressaut est étudié sous
l’hypothèse de l’ écoulement parfait d’ un liquide incompressible de masse volumique µ. Le jet, vertical,
est caractérisé par sa vitesse uniforme u0 et son rayon a au voisinage de la nappe horizontale, avant qu’il
ne soit perturbé par cette nappe.
En l’absence de forces de viscosité, le champ de vitesses en dehors du jet sera considéré comme
radial et indépendant de la hauteur x : u = u(r)er , er est le vecteur unitaire associé à la coordonnée
radiale. On note u1 = u(Rε) et u2 = u(R + ε) les vitesses immédiatement avant et après la discontinuité.
a) Montrer qu’on ne peut envisager dans ce modèle le nombre de Reynolds et qu’à la
place, il est pertinent de considérer la grandeur non dimensionnée Fu
ag
=0
2 avec ||u0|| = ||u0||.
b) Soit q le bit volumique ; en appliquant le théorème de Bernoulli « à la surface »
(donc sur une ligne de courant), montrer que la hauteur h(r) du fluide avant le ressaut et à une distance r
suffisante du centre du jet vérifie q
r h r g h r K
2
2 2 2
8π( ) . ( )+ = .
c) Considérer les valeurs numériques typiques suivantes : le bit est de deux litres par
minute, lépaisseur de la couche liquide juste avant le ressaut est de 0,5 mm, a = 2 mm et R = 3 cm pour
justifier que l’un des termes de la relation donnée à la question 2 est petit devant lautre, et que l’on peut
donc le gliger (on prendra g = 9,81 m.s–1). Cette approximation reste-t-elle valable plus près du centre
du jet ? d) Déduire de cette remarque l’expression de la constante K de la question 2 et la
manière dont la vitesse varie avec r. Montrer, en revenant sur le théorème de Bernoulli, que l’inégalité
dh r
dr
( ) << 1 a la même conséquence sur la manre dont la vitesse varie avec r.
Démontrer enfin la relation h r q
ru ar
( ) ≈ =
2 2
0
2
π
e) On effectue maintenant un bilan de quantité de mouvement en
considérant la surface fermée Σ limitée par les surfaces élémentaires de
largeur angulaire dθ et de hauteur h1 immédiatement avant et h2
immédiatement après le ressaut (fig. 2). Déterminer la variation de la
quantité de mouvement entre les instants t et t + dt d’un système que l’on
précisera. La hauteur h2 étant nettement supérieure à h1, la conservation du
débit élémentaire de masse dDm = µRh1u1dθ implique que la vitesse u2 est
nettement inférieure à u1. Simplifier dans ces conditions l’expression
obtenue. f) Considérant le même élément de fluide, montrer que la
variation de la pression p(x) suivant x est la même quen statique. Calculer la
résultante des forces de pression sur cet élément.
g) Appliquer le théorème de la résultante cinétique et en déduire la relation 2h1u12 gh22.
Déterminer lexpression du rayon R en fonction de a, u0, g et h2.
Spé ψ 2004-2005 page 4/4 Devoir n°3
h) Exprimer d E
dt
[ ]δC
F
H
G
I
K
J, variation de l’énergie cinétique de cet élément par unité de
temps, en fonction des vitesses et du bit massique élémentaire. Simplifier le résultat obtenu lorsque
u2 << u1.
i) Déterminer la puissance dPP des forces de pression s’exerçant sur le ressaut. En
déduire d E
dt d
[ ]δCP
F
H
G
I
K
JP.
j) Qu’est devenue lénergie cinétique manquante ? Avec quelle hypothèse ce résultat est-
il incompatible ? Il faut donc raffiner ce premier modèle.
II-2) Seconde modélisation : écoulement d’un fluide visqueux
Jusqu’ici, nous ne sommes pas parvenus à déterminer la position du ressaut en fonction des
données, la hauteur h2 subsistant dans le résultat. Considérons que la viscosité joue un rôle essentiel
dans la position du ressaut. On note η la viscosité dynamique du fluide et ν
η
µ
= sa viscosité ciné-
matique.a) On suppose que la gravité ne joue pas de rôle dans la position du ressaut. Montrer
qu’une analyse dimensionnelle permet décrire R = aψ(RE), ψ est une fonction inconnue de la
quantité R
u
a
E=0
ν
b) Expliquer en quelques mots la signification et l’inrêt de la notion de couche limite.
c) On admet que, lorsque le fluide est emporté vers la périphérie, lépaisseur δ de la
couche limite le long de la plaque augmente selon la loi δ ν= k tC, t
r
u
C=0
est le temps typique de
convection du fluide jusqu’à la distance r. La valeur précise de la constante k pend de la structure de
la couche limite. En tout état de cause, k est de l’ordre de l’unité. Déterminer sa dimension.
d) Connaissez-vous d’autres phénomènes pour lesquels on observe une relation du type
précédent δ ∝ t
entre distance δ et temps t ? Comment les nomme-t-on ?
e) L’étude détaillée de lécoulement est difficile. Nous utiliserons donc quelques idées
physiques pour en appréhender les aspects essentiels. Nous conviendrons (modèle de GODWIN) que le
ressaut hydraulique apparaît pour une épaisseur de la couche limite égale à lépaisseur prévue par le
modèle du fluide parfait, soit h
q
u R
10
2
=π. La viscosité envahissant alors tout l’écoulement, elle nest
plus négligeable. Déterminer le rayon R du ressaut dans cette hypothèse.
f) Comment s’exprime la fonction ψ(RE) de la question 2-a ?
g) Voici quelques résultats expérimentaux obtenus avec a = 0,5 cm, u0 = 80 cm.s–1 et
trois liquides de viscosités cinématiques variées.
liquide eau huile glycérine
viscosité cin. (cm2.s–1) 0,01 1 10
rayon mesuré (cm) 5 1 0,5
Montrer que ces résultats sont compatibles avec la relation précédente. Déterminer l’ordre de
grandeur de la constante k.
1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !