Master MREE -2016
Pr. Benjelloun UCD Page 1
Exercices - 1.
1. Calculer la différence d'énergie de liaison entre un noyau de 12C et la somme des
énergies de liaison de trois noyaux 4He (particule ).
2. En supposons que le 12C est composé de trois particules , quelle est l'énergie de
liaison entre elles?
Exercices - 2.
1. Si le noyau est considéré comme sphérique de rayon R et ayant une densité de charge
(r) uniforme, montrer que l’énergie coulombienne des protons est donnée par :
2 2
0
3
5 4
c
e Z
E
R

2. Calculer la différence d’énergie de liaison des noyaux miroirs
33
16
S
et 33
17
Cl
sachant que
la masse de 33
17
Cl
excède celle de
33
16
S
de 0.00599 uma.
3. Comparer la valeur obtenue à la différence d’énergie coulombienne dans ces noyaux
sachant que 1/3 13
1.4 10 ( )
R A cm
  . Conclure.
4. De ce qui précède, déterminer pour A=33 la valeur du rayon nucléaire r0.
Exercices - 3.
1. Pour le noyau A
Z
, donner l’expression de l’énergie de liaison B(A,Z) en fonction des
excès de masse de l’hydrogène, du neutron et de l’atome donné.
2. A l’aide de l’expression trouvée et des excès de masse (voir table sur site),
a. Calculer l’énergie de liaison d’un noyau possédant un nombre égal de protons et
de neutrons et un rayon égal au 2/3 de celui du noyau 27
Al
b. Calculer l’énergie de liaison par nucléon dans les noyaux6
Li
,40
Ar
, 107
Ag
et 208
Pb
c. Calculer l’énergie de séparation d’un neutron, d’une particule de 21
10
Ne
d. Quelle est l’énergie nécessaire pour casser un noyau de 16
8
O
en une particule et
un noyau de 12
6
C
Exercices - 4.
On rappelle la formule semi-empirique donnant l'énergie de liaison B(A,Z) d'un noyau
de nombre de masse A contenant Z protons:
 
2
2/3 2 1/3 1
, 2 ( )
v s c a p
B A Z a A a A a Z A a A A Z a A
 
 
av, as, ac et aa sont des coefficients constants (en première approximation) et ayant
pour valeur respectivement 14 MeV, 13 MeV, 0.60 MeV et 19 MeV;
3/4
34
p
a A
  ;
 = 0 si A est impair = +1 pour A et Z pairs ;  = -1 pour A pair et Z impair.
1. Calculer l’énergie de liaison B(A,Z), l’énergie moyenne de liaison et la masse
atomique des noyaux 45
21
Sc
et 70
30
Zn
en utilisant la formule semi empirique..
2. En supposant que l'énergie de liaison des électrons est négligeable, montrer
que la masse de l'atome M(A,Z) est donnée par la relation suivante:
 
 
2
, p
A Z A Z Z a A
M
a. Expliciter les coefficients , et ; Comment varient ces coefficients en fonction
de Z lorsque A est constant.
b. Pour A constant, discuter l’allure de M(A,Z)=f(Z) en fonction de la parité de A, et
tracer les courbes relatives à A=59 et A=64.
c. Pour une chaine isobarique déterminer l'expression de la charge Z0 (A) de
l'isobare (le plus stable) ayant la plus petite masse.
d. Quel est l’isobare le plus stable pour A=208.
Master MREE -2016
Pr. Benjelloun UCD Page 2
Exercices - 5.
Un proton, de masse m et de charge q, est placée dans un champ électrique uniforme E
créé en maintenant, entre deux plaques conductrices, parallèles et distantes de d, une
différence de potentiel U. Les plaques sont dans le vide et percées, l'une en A, l'autre en
D , pour permettre le passage des particules. Le proton est initialement au repos en A.
1. Quelle est la vitesse v du proton en D
2. Calculer le rayon R de la trajectoire.
3. Une seconde particule, de
masse m inconnue, de même charge que
celle du proton, également au repos en A ,
subit d'abord l'action du champ électrique
uniforme et atteint D avec la vitesse v’. Elle
est ensuite soumise à l'action du champ
magnétique uniforme et décrit d'un
mouvement uniforme une circonférence de
rayon R. Établir la relation entre R’, R , m’ et
m .
4. L'expérience permet la mesure
de DC’, on a trouvé 362 mm. Calculer m.
5. Quelle est cette seconde particule ?
Exercices - 6.
Dans un spectrographe, les ions (supposés sans vitesse initiale) sortent d'abord d'un
ioniseur dans lequel ils sont accélérés sous une tension U = 10 kV. Ils pénètrent ensuite
dans un champ magnétique B = 0,1 T transversal uniforme et indépendant du temps. Ils
décrivent alors un demi-cercle et viennent impressionner une plaque photographique.
1. Déterminer la vitesse des particules à la sortie de l'accélérateur.
2. Déterminer la distance d séparant les deux points d'impact sur la plaque
photographique, associés à deux isotopes.
3. Calculer cette distance pour les isotopes du 39K et 41K ionisés une fois.
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !