Dynamique des fluides en écoulement parfait Introduction 1 Etude

Physique Cours : Dynamique des fluides en écoulement parfait
Dynamique des fluides en écoulement parfait
Introduction
Après avoir fait une analyse cinématique d’un fluide en mouvement, nous nous intéressons
maintenant à la cause de cette mise en mouvement, c’est à dire à la dynamique des écoulements.
Après avoir brièvement défini la viscosité, nous nous placerons dans le cadre d’un écoulement
parfait, c’est à dire pour lequel les forces de viscosité peuvent être négligées.
Nous verrons qu’il est possible d’interpréter un très grand nombre de phénomènes physiques
très simplement grâce aux résultats de ce chapitre : vol d’un avion, trajectoires des balles et
ballons présentant un effet...
Expérience : Nous tenterons en particulier de comprendre l’expérience très simple suivante :
plaçons deux feuilles A4 verticalement, parallèles, à environ 10cm l’une de l’autre, et soufflons
entre les deux feuilles. On constate que les deux feuilles viennent se coller.
1 Etude dynamique d’une particule de fluide en mouvement
1.1 Poids et forces de pression (rappels de statique des fluides)
On considère un fluide au repos dans le champ de pesanteur terrestre. On rappelle que nous
avions vu en première année dans le chapitre de statique des fluides qu’une particule de fluide
ést soumise à deux forces qui se compensent :
le poids de la particule de fluide, d’expression :
d
Fg=µ
g dτ
est le volume élémentaire de la particule, défini par =dxdydz
les forces de pression exercées par les particules adjacentes sur une particule de fluide.
z
F (z+dz)
p
F (z-dz)
p
F (y+dy)
p
F (y-dy)
p
F (x+dx)
p
F (x-dx)
p
dx
dy
dz
y
x
g
P
M
2
2
2
2
2
2
Figure 1: Bilan des forces s’exerçant sur une particule de fluide au repos.
Pour une particule de fluide centrée en M(x, y, z), la résultante des forces de pression s’écrit :
d
FP=P(xdx
2, y, z)P(x+dx
2, y, z) dydz
ux
+P(x, y dy
2, z)P(x, y +dy
2, z) dxdz
uy
+P(x, y, z dy
2)P(x, y, z +dz
2) dxdy
uz
PSI - Année 2010/2011 1 Lycée Paul Eluard
Physique Cours : Dynamique des fluides en écoulement parfait
Et donc, au premier ordre en dx,dy et dz :
d
FP=
gradP dτ
1.2 Approche expérimentale des forces de viscosité
Considérons maintenant une particule de fluide en mouvement.
Afin de bien comprendre l’expression des forces supplémentaires qui s’exercent localement sur
la particule, présentons l’expérience de l’écoulement de Couette-plan.
Après avoir introduit, à l’aide d’une seringue, une colonne OA0de glycérine colorée dans un
grand cristallisoir contenant de la glycérine sur une hauteur e, on déplace un palet plat de centre
Aet de surface Shorizontalement, à vitesse constante
v0. On considérera le système invariant
selon la direction Oy.
A A
0
O
glycérine
x
z
x+dx
z
z+dz
x
dFz+dz
dFz
a) b)
vv00
particule de
fluide
Figure 2: a) Ecoulement de Couette-plan mettant en évidence le caractère tangentiel des forces
de viscosité. b) Forces tangentielles dues à l’inhomogénéité verticale de la vitesse.
Nous constatons que :
la colonne de glycérine adhère d’une part au fond fixe du cristallisoir, au niveau du point
O, et d’autre part au palet se déplaçant à la vitesse v0, au niveau du point A.
la colonne forme approximativement une droite OA(t).
l’écoulement se fait suivant la direction de déplacement du palet Ox, et que la vitesse des
particules ne dépend que de la profondeur z. Le champ des vitesses peut donc s’écrire :
v=vx(z)
ux
On en déduit donc que l’écoulement est incompressible puisque : div
v=vx
x = 0.
en refaisant l’expérience plusieurs fois avec des palets, des cuves et des vitesses différentes,
la force nécessaire pour faire avancer le palet est proportionnelle à S, inversement propor-
tionnelle à e, et proportionnelle à v0.
Les couches supérieures de fluides entraînent les couches inférieures sous l’effet de forces
tangentielles, appelées forces de viscosité, dues à l’inhomogénéité du champ des vitesses.
Dans le cas de l’expérience précédente, il existe seulement une inhomogénéité de vitesse suivant
la direction verticale, de sorte qu’une particule de fluide de volume =dxdydz située entre les
altitudes zet z+dz est soumise à deux forces, dont nous validerons l’expression dans le chapitre
suivant :
une force d
Fz+dz exercée sur la face supérieure de la particule de surface dS =dxdy, à
l’altitude z+dz par la particule de fluide située au dessus et se déplaçant plus vite :
d
Fz+dz =ηvx
z (z+dz)dS
ux
PSI - Année 2010/2011 2 Lycée Paul Eluard
Physique Cours : Dynamique des fluides en écoulement parfait
ηest un coefficient numérique que nous allons commenter plus bas.
une force d
Fzexercée sur la face inférieure de la particule de surface dS =dxdy, à l’altitude
zpar la particule de fluide située au dessous et se déplaçant moins vite :
d
Fz=ηvx
z (z)dS
ux
On note que si la vitesse des particules est identique, celles-ci ne "frottent" pas les unes contre
les autres, et ces deux forces sont nulles, ce qui est cohérent avec l’expression faisant intervenir
la dérivée partielle de la vitesse.
Intéressons nous maintenant à la résultante des forces de viscosité s’exerçant sur une particule
de fluide dans l’écoulement précédent. Celle-ci s’écrit à l’ordre non nul le plus bas :
d
Fη=d
Fz+dz +d
Fz=η!vx
z (z+dz)vx
z (z)"dxdy
ux=η2vx
z2dxdydz
ux=η2
v
z2
On obtient finalement l’expression suivante, dont nous admettrons la validité pour tout écoule-
ment visqueux incompressible 1:
d
Fη=η
v dτ pour tout écoulement visqueux incompressible
correspond à l’opérateur Laplacien.
Nous avons fait apparaître ici le coefficient de viscosité dynamique η, qui est caractéris-
tique du fluide considéré, et a pour dimension :
[η] = [force] [longueur]
[vitesse] [surface]=MLT 2L
LT 1L2=ML1T1
L’unité correspondante dans le système international est le poiseuille de symbole P l.
corps pur glycérine eau air
viscosité dynamique η η 1P l η 103P l η 105P l
La viscosité agit comme un transport de quantité de mouve-
ment des zones rapides vers les zones lentes. Nous verrons que la vis-
cosité s’apparente à un phénomène de diffusion lorsque l’on abordera
les chapitres sur la diffusion de particule et la diffusion thermique.
Donnons toutefois une définition rapide de la diffusion : la dif-
fusion est un phénomène de transport (tout comme la convection,
évoquée au chapitre précédent) irréversible qui se traduit par une
migration de matière, d’énergie, ou de charge dans un milieu, mais
sans déplacement global, sousl’effet d’un déséquilibre ou d’une inho-
mogénéité de concentration, d’énergie... Un exemple est donné dans
la figure ci-contre (diffusion de permanganate de potassium dans de
l’eau).
Transition : Avant de revenir sur les conséquences de la viscosité et sur les modélisations d’un
écoulement visqueux, nous allons tout d’abord voir dans quel cadre on peut négliger la viscosité,
et quelles sont les caractéristiques de tels écoulements dits parfaits.
1. Nous rappelons que le champ des vitesses proposé ici est incompressible car div
v= 0. Le cas d’un écoule-
ment compressible est explicitement hors programme.
PSI - Année 2010/2011 3 Lycée Paul Eluard
Physique Cours : Dynamique des fluides en écoulement parfait
2 Modèle de l’écoulement parfait
2.1 Définition
Un écoulement est dit parfait si :
le fluide est parfait lui-même, c’est à dire si η= 0. On appelle un tel type de fluide un
superfluide. Ceci n’a pour l’instant été observé que pour de l’Helium liquide, refroidi à une
température extrêment basse, au dessous de 2 Kelvin. La particularité suprenante d’un tel
fluide est qu’il n’exerce aucune résistance sur des solides en mouvement.
a) b)
Figure 3: L’Helium 4 a la particularité de devenir superfluide à très basse température (T<2
K), c’est à dire qu’il s’écoule sans viscosité. a)Ecoulement d’Helium superfluide hors
d’un récipient. b) Fontaine d’Helium superfluide.
tous les phénomènes de transport diffusifs sont négligeables, notamment la viscosité,
par rapport aux autres phénomènes. Dans ce cas, on pourra faire l’approximation que
d
Fη=η
v dτ
0.
2.2 Conditions aux limites
Nous avons vu au chapitre précédent que la conservation de la masse imposait une vitesse
tangentielle au niveau d’un obstacle fixe (voir figure 4 a.).
Dans un écoulement visqueux, d’après l’expression de la force de viscosité, une discontinuité
de la vitesse correspondrait à une force infinie, puisque la dérivée divergerait. Cela impose donc
la continuité de la vitesse dans un tel écoulement, et donc la nullité de la vitesse au niveau d’un
obstacle imperméable fixe (voir figure 4 b.).
v
a) b) v
couche limite
Figure 4: a) Ecoulement parfait sur une plaque. b) Ecoulement réel sur une plaque.
On retiendra donc dans le cas général que :
PSI - Année 2010/2011 4 Lycée Paul Eluard
Physique Cours : Dynamique des fluides en écoulement parfait
dans un écoulement parfait, il y a toujours continuité de la composante normale de la
vitesse. En particulier, au niveau d’un obstacle fixe, la vitesse est nécessairement tangen-
tielle.
dans un écoulement visqueux, il y a toujours continuité des composantes normale et
tangentielle de la vitesse. En particulier, au niveau d’un obstacle fixe, la vitesse d’écoulement
est nulle 2.
2.3 Limites de validité du modèle
En pratique, sauf dans le cas de l’helium superfluide, il existe toujours des interactions micro-
scopiques entre le liquide et un obstacle imperméable, qui tendent à freiner l’écoulement 3.
Cependant, ces forces de viscosité ne jouent un rôle important que dans les zones de l’écoule-
ment dans lesquelles les gradients de vitesse sont importants, c’est à dire près des obstacles.
On peut donc généralement utiliser le modèle de l’écoulement parfait dans un écoulement réel,
à l’exclusion d’une couche limite autour des obstacles, comme le montre la figure précédente
dans le cas de l’écoulement visqueux.
Ainsi, lorsqu’on se place hors de la couche limite, η#= 0, mais c’est le terme 2v
z2qui est nul,
donc la force est globalement nulle, et l’écoulement peut être considéré comme parfait 4.
Finalement, on retiendra que :
Un écoulement peut être considéré comme parfait hors de la couche limite
L’épaisseur δde la couche limite peut être estimée sachant que :
dans la couche limite, le transport diffusif est supérieur au transport convectif.
hors de la couche limite, le transport convectif est supérieur au transport diffusif.
à la limite entre les deux zones, les deux phénomènes sont du même ordre de grandeur, de
sorte que 5:
||µ#
v·
grad$
v||
% &' (
convection
≃ ||η
v||
% &' (
viscosité
µv2
Lηv
δ2
δ)ηL
µv
2. On rappelle que les résultats peuvent être généralisés dans le cas d’un obstacle en mouvement en se plaçant
dans le référentiel de l’obstacle. Dans le cas d’un écoulement visqueux, le fluide va exactement à la même vitesse
que l’obstacle au voisinage de celui-ci. En particulier, l’air placé juste devant le nez d’un avion va à la même
vitesse que l’avion lui-même.
3. On dit également que les fluides "mouillent" les surfaces imperméables.
4. Attention : on voit donc ici qu’on pourra utiliser les équations valables pour un écoulement parfait même
pour un fluide réel. On ne déduira pas abusivement que c’est car on peut considérer que η0.
5. On utilise ici un raisonnement par ordre de grandeur, très couramment utilisé en mécanique des fluides
lorsque les équations à résoudre sont très compliquées et dans lesquelles certains termes sont négligeables. En
particulier, pour une fonction dont la dérivée n’a pas de variations trop brutales sur un intervalle de longueur L,
ou sur un intervalle de temps T, on peut estimer la dérivée des fonctions par une approximation linéaire :
****
f
x****
****
valeur typique de f
L****ou ****
f
t ****
****
valeur typique de f
T****
où le symbole signifie "du même ordre de grandeur que".
PSI - Année 2010/2011 5 Lycée Paul Eluard
1 / 6 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !