Planck_precise_la_date_de_l_allumage_des_premieres_etoiles

Planck précise la date de l'allumage des premières étoiles
Les membres de la collaboration Planck viennent de livrer aux nérations futures de cosmologistes
et d'astrophysiciens un extraordinaire héritage : le résultat de l'analyse de l'ensemble des données
collectées par le satellite de l'Esa entre 2009 et 2013 concernant le rayonnement fossile. Il n'a
malheureusement pas été possible de trouver la preuve tant attendue de la théorie de l'inflation mais on
en sait maintenant plus sur la nature de la matière noire, la géométrie de notre univers et la date de
l'allumage des premières étoiles.
Le 06/02/2015 à 15:41 - Par Laurent Sacco, Futura-Sciences
Planck précise la date de l'allumage des premières étoiles - 1 Photo
En avril 2013, l’Esa avait rendu publics les premiers résultats portant sur la cosmologie issus des
analyses des données collectées par les deux instruments de Planck, LFI (Low Frequency Instrument) et HFI
(High Frequency Instrument). Ceux-ci étaient chargés d'observer le rayonnement fossile, en radio pour le
premier et dans les domaines submillimétrique et infrarouge lointain pour le second. La nouvelle image de
l’univers observable qui en avait émergé provenait de deux couvertures complètes de la voûte céleste.
Les membres de la collaboration Planck savaient qu’ils pouvaient obtenir une image encore plus
précise et complète de notre cosmos car, en alité, cinq couvertures du ciel avec HFI et huit avec LFI
avaient éobtenues. On pouvait donc s’attendre à de nouvelles révélations concernant par exemple la
courbure et la topologie de notre univers et la nature de son contenu en matière et en énergie noire.
Mais la principale préoccupation des cosmologistes, des astrophysiciens et des physiciens théoriciens
de hautes énergies était sans doute les résultats des analyses portant sur la polarisation du rayonnement
fossile. Comme l’explique la vidéo ci-dessous, la connaissance précise de cette polarisation, qui peut être
décomposée en deux parties désignées sous les termes de modes E et de modes B, nous permet, en
théorie, de déterminer à quel moment les premières étoiles se sont allumées dans l’univers, c'est-à-dire le
début de la période de la réionisation, encore appelée celle de la Renaissance cosmique, qui a mis fin aux
âges sombres.
Depuis la publication des premiers résultats des analyses des observations de Planck en 2013, les travaux
se sont poursuivis. Cette vidéo nous explique de quelle nature pouvaient être les nouvelles découvertes
découlant de ces travaux, en particulier ceux effectués pour préciser la mesure de la polarisation du
rayonnement fossile et qui concernent la date de la réionisation et la théorie de l'inflation. © HFI Planck,
YouTube
Plus précisément cela nous permet de savoir quand le rayonnement des premiers astres formés à
partir de la matière neutre laissée par le Big Bang a commencé à rieusement ioniser à nouveau les
atomes d’hydrogène et d’hélium qui s’étaient formés 380.000 ans après le Big Bang au moment de
l’émission du rayonnement fossile (la période dite de la recombinaison). La découverte, et la mesure des
modes B en particulier, a le potentiel de nous révéler si une phase d’inflation primordiale s’est bel et bien
produite environ 10-35 seconde après l’hypothétique temps zéro des modèles cosmologiques relativistes
standards utilisés pour décrire le cosmos depuis le temps de Planck.
La réionisation et l'inflation selon Planck
L’excitation est donc devenue grande quand, le 17 mars 2014, les membres de la collaboration
Bicep2 ont fait savoir qu’ils avaient probablement grillé au poteau leurs confrères de Planck en observant
des modes B apparemment spécifiques à une phase d’inflation. Mais il fallait une confirmation
supplémentaire, en l’occurrence la publication des analyses complètes des observations collectées par
Planck. Elles étaient attendues pour la fin de l’année 2014.
Mis en ligne ces derniers jours, le travail conjoint des membres de Planck, Bicep2 et de ceux d’une
autre expérience (Keck Array) n’a pas permis de valider les conclusions avancées en mars 2014. Le signal
observé était en fait produit par les poussières de la Voie lactée dont on avait sous-estimé la contribution à
la polarisation du rayonnement fossile.
Restait en suspens la question de l’estimation de la date de l’allumage des premières étoiles. On
attendait également des estimations plus précises des paramètres cosmologiques, constituant en quelque
sorte la carte d’identité de notre univers. D'autres interrogations demeuraient, comme celles liées aux
contraintes éventuelles à imposer aux modèles d’inflation, sans oublier les informations sur les
caractéristiques des galaxies et des amas de galaxies.
L’Esa vient finalement de mettre en ligne ce 5 janvier 2015 la majorité des résultats finaux
concernant les analyses des observations complètes de Planck. Le CNRS a publié un communiqué portant
sur les principaux résultats obtenus et le site Planck HFI a également mis en ligne plusieurs pages sur le
sujet.
Les spécialistes pensent maintenant que la réionisation de l’univers sous l’effet du rayonnement des
premiers astres a commencé environ 550 millions d’années après le Big Bang et pas 450 millions d’années
comme l’indiquaient les précédentes estimations. L’information est précieuse parce qu’elle indique qu’il
suffit de faire intervenir l’allumage des premières étoiles, et qu'il n'est pas nécessaire de l'accompagner de
la présence d’autres sources de rayonnement exotiques, pour provoquer cette réionisation.
En effet, des observations faites de l’univers lointain, par exemple avec le télescope Hubble ou le VLT,
conduisaient à penser que la formation des galaxies avaient débuté environ 300 à 400 millions d’années
après le Big Bang, ce qui laissait trop peu de temps à la formation des premières étoiles pour vraiment
réioniser significativement l’univers.
Le satellite Planck vient de livrer sa toute dernière carte de l'univers. Elle montre le rayonnement fossile, la
plus ancienne lumière du cosmos, mais avec cette fois une nouvelle donnée : la polarisation de ces
rayonnements. © CNRS, Dailymotion
Le contenu, la géométrie et la topologie de l'univers selon Planck
L’âge du cosmos observable a été précisé, sa valeur est maintenant estimée à 13,77 milliards
d'années avec une constante de Hubble qui vaut H0=67,8 +/-0,9 km s-1 Mpc-1.
Il est composé à 4,9 % de matière baryonique dont une partie importante ne se trouve pas sous
forme d’étoiles.
Selon les estimations, son contenu en matière noire constitue 25,9 % de la masse de l’univers
observable. On ne sait toujours pas de quoi est constituée cette matière noire l’exception d’une très
faible fraction qui est sous forme de trois familles de neutrinos dont la somme des trois masses
individuelles est inférieure à 0,23 eV). Des contraintes ont cependant été établies sur les propriétés de ces
particules comme l’ont annoncé les membres de la collaboration Planck l’année dernière.
L’énergie noire reste la composante dominante de l’univers observable aujourd’hui : elle constitue à
69,2 % la masse contenu dans son volume (rappelons que le paramètre décrivant le contenu en énergie
noire d’un modèle de cosmologie relativiste standard se note ΩΛ et celui décrivant la matière noire et
baryonique Ωm. Leur somme est égal à 1 dans un univers exactement plat).
En combinant les données de Planck avec celle fournies par les observations des supernovae SN Ia, il
n’a pas été possible de mettre en évidence un comportement de cette énergie noire différent de celui
qu’on attendrait d’une vraie constante cosmologique fournie par exemple par l’énergie du point zéro des
champs quantiques. On ne peut donc pas y voir la trace d’une nouvelle physique, comme celle des champs
scalaires émergeant de la supergravité ou de la théorie des cordes. Espérons que les observations que
permettront Euclid et le LSST seront moins décevantes à cet égard.
En combinant les mesures de Planck avec les observations des oscillations acoustiques des baryons
(BAO) on obtient maintenant une extraordinaire limite sur le paramètre décrivant la courbure totale de
l’univers observable (Ωk=1-Ωm-ΩΛ). Il ne diffère de la valeur nulle que de 0,005 au maximum. Cela signifie
que nous pourrions être dans un univers ayant la forme d’un hypertore et donc avec une géométrie
spatiale plate. Les données de Planck n’ont toutefois pas permis de mettre en évidence cette topologie
particulière, pas plus que d’autres.
Une nouvelle physique qui se cache mais une cosmologie affermie
En résumé, les observations de Planck sont parfaitement compatibles avec un univers décrit par le
modèle cosmologique standard et il n’existe aucun signe d’une nouvelle physique, comme par exemple
une quatrième famille de neutrinos, des défauts topologiques, à l’exception de la présence de la matière
noire et de l’énergie noire.
Il n’en reste pas moins que toutes les informations fournies par Planck ne se limitent pas qu’à
l’estimation des paramètres cosmologiques fondamentaux puisqu’elles concernent aussi l’astrophysique
de la Voie lactée et des amas de galaxies. Elles constituent donc un héritage important et un
affermissement conséquent de la base sur lesquels, cosmologistes et astrophysiciens vont continuer à
explorer et comprendre l’évolution de la matière cosmique depuis le Big Bang.
La quête des modes B de l'inflation va aussi se poursuivre avec d'autres instruments. Grâce à ses
données, la collaboration Planck va d'ailleurs bientôt mettre en ligne un article portant sur les nouvelles
contraintes des modèles d'inflation.
1 / 3 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !