TP 2. La dynamique newtonienne
I. 1ère loi de Newton ( le principe d’inertie)
!
!
!
!
!
!
!
!
!
!
:(!<-)!/-!0-%+*$6!(,)!/(!'1*%(!6+*,,(%7!,-%!+1!6+10(7!/(,!3*(%%(,!/(!6%1$*)(!/H-$(!
91,,(!/(!"I!J67!()!/(!+(,!3+10(%!+(!3lus$près$possible$de$la$cible$dessinée$sur$la$
glace,'appelée'«'maison'››.'Les'balayeurs'tentent'de'diminuer'au'maximum'les'
'%.))(9($),!($)%(!+1!6+10(!()!+1!3*(%%(=!K,.$)K*+,!0131<+(!/(!9./*'*(%!+1!)%1;(0).*%(!
/(!+1!3*(%%(!L!K,.$)K*+,!0131<+(!/(!9./*'*(%!sa#vitesse#?#(l’accélérer,#la#ralentir#?)#Si#
l’on%supprimait%totalement%les%frottements%entre%la%pierre%et%la%glace,%comment%
évoluerait+la+vitesse+de+la+pierre,+et+pourquoi+?!
!
Activité%de%modélisation%:!:(!9.->(9($)!/(!+1!3*(%%(!/(!0-%+*$6!,-%!+1!6+10(!et#en#
l’absence)de)frottement,)peut)être)modélisé)par)le)mouvement)d'un)glaçon)sur)un)plan)horizontal)lisse.!
!
!
9#:-0-!+$;'%+0%-!<)0%2'080*#%!
9#:-0-!+%!80)=0%-!:015/!>!?+,@/2A,:0!B!
;1,3'%-!+%!80)=0%-!C!+$5)-,2!
D=/0&0-!#2!-%3E-%A!
F,0-%!+$5',+/22,?%!1%!+$04,?%!G!+,!+,-?%#-!1$#2%!3/-'%!1$,-4/0-%!8,0'!HIJK!4L!
D=/0&0-!+$04,?%!K!)/44%!/-0?02%!1%&!1,'%&!G!'MHLA!
F,0-%!+$,)*#0&0'0/2A!
!
M=!E%10(%!+(,!3.,*)*.$,!N!/-!6+1O.$!($!'.$0)*.$!/-!)(93,!
"=!?./&+*,(%!+1!0.-%<(!31%!-$(!'.$0)*.$!+*$&1*%(!/-!)P3(!Q!x=a*t%!
R=!S.99($)!+1!>*)(,,(!/-!6+1O.$!&>.+-(K)K(++(!($!'.$0)*.$!/-!)(93,!L!
F=!T1*%(!-$!<*+1$!/(,!10)*.$,!9&01$*2-(,!,5(N(%O1$)!,-%!+(!6+1O.$!
Conclure%:%
G=!U-(++(!(,)!+1!$1)-%(!/-!9.->(9($)!/-!6+1O.$!($!+51<,($0(!/(!'%.))(9($),!L!
V=!:(!9.->(9($)!/-!6+1O.$!3(-)K*+!,H(N3+*2-(%!31%!+(!3%*$0*3(!/H*$(%)*(!L!
!
II. 2ème loi de newton ( le principe fondamental de la dynamique)
%
%
POINTAGE%ET%EXPLOITATION%DES%DONNEES%
%
9#:-0-!+$;'%+0%-!<)0%2'080*#%!
9#:-0-!+%!80)=0%-!:015/!>!D=#'%!3,-,N/+0*#%A,:0!B!
!"#$%&'()*+*
x !"#$%&'()'*)'+,$-%*'().'&)'/('0%&*('1'/*&)2%.'-),-3()#/#$4&'().'&)1-32'1'/*&*
x hƚŝůŝƐĞƌůĞƉƌŝŶĐŝƉĞĚ͛ŝŶĞƌƚŝĞƉŽƵƌŝŶƚĞƌƉƌĠƚĞƌĚĞƐŵŽƵǀĞŵĞŶƚƐƐŝŵƉůĞƐĞŶƚĞƌŵĞƐĚĞĨŽƌĐĞƐ*
*
,-&./01%&'/-*+* !"#$% &*
'$&()*&#)&+),-"./&$0*&#$&12",$&/-"00$,3&0),&-2&/-2+$3&#$0&4"$,,$0&#$&&
/,2."*$).$&6200$&#$&78&9/3&$*&#$&-$0&4-2+$,&-$&4-)0&4,:0&4%00"(-$&&
ĚĞůĂĐŝďůĞĚĞƐƐŝŶĠĞƐƵƌůĂŐůĂĐĞ͕ĂƉƉĞůĠĞͨŵĂŝƐŽŶͥͥ͘&
'$0&(2-2;$),0&*$.*$.*&#$&#"6".)$,&2)&62<"6)6&-$0&1,%**$6$.*0&&
$.*,$&-2&/-2+$&$*&-2&4"$,,$=&&
>0%.*>"-0&+242(-$&#$&6%#"1"$,&-2&*,2?$+*%",$&#$&-2&4"$,,$&@&
>0%.*>"-0&+242(-$&#$&6%#"1"$,&02&!"*$00$&͍;ů͛ĂĐĐĠůĠƌĞƌ͕ůĂƌĂůĞŶƚŝƌ&@A&
^ŝů͛ŽŶƐƵƉƉƌŝŵĂŝƚƚŽƚĂůĞŵĞŶƚůĞƐĨƌŽƚƚĞŵĞŶƚƐĞŶƚƌĞůĂƉŝĞƌƌĞĞƚůĂŐůĂĐĞ͕&
+%66$.*&B!%-)$,2"*&-2&!"*$00$&#$&-2&4"$,,$3&$*&4%),C)%"&@&
*
2345.'$-%$*+*
6$*7/18$7$-&*0$*9:*4'$..$*0$*%1.9'-;*)1.*9:*;9:%$*$&*ĞŶů͛ĂďƐĞŶĐĞĚĞĨƌŽƚƚĞŵĞŶƚ3&4$)*&D*,$&6%#B-"0B&42,&-$&6%)!$6$.*&
#5).&/-2E%.&0),&).&4-2.&F%,"G%.*2-&-"00$=&
&
H= '2.+$,&-$&-%/"+"$-&I!"6B+2&3&$*.0&-$&6$.)&!"#$"%&'()*+&"&'*,'#-".'+"/01&&3&%)!,",&-$&1"-6&J&/-2E%.&K&
7= L2",$&2-".'('3/4.5%&'(')6&
M= L2",$&&).&+-"+&#,%"*&0),&-2&!"#$%&4)"0&ĐůŝƋƵĞƌƐƵƌů͛ŽŶŐůĞƚ7&1.&"%508'/*'#-".''ĞƚƌĞĐŽƉŝĞƌƐƵƌǀŽƚƌĞĐŽƉŝĞůĂĚƵƌĠĞĚ͛ƵŶĞ
"62/$&$*&-2&1,BC)$.+$&#$0&"62/$0&
N= ů͛ĂŝĚĞĚĞƐĐƵƌƐĞƵƌƐƐŝƚƵĠƐĞŶďĂƐăŐĂƵĐŚĞ͕ĂǀĂŶĐĞnjůĞĨŝůŵũƵƐƋƵ͛ăů͛ŝŵĂŐĞϱ&
O= P-"C)$,&ƐƵƌů͛ŽŶŐůĞƚ954-1,,4:%&
Q= R2.0&)&":",%'%5'8%,8'/%8'4;%8'<'ŚŽŝƐŝƌů͛ŽƌŝĞŶƚĂƚŝŽŶƐƵŝǀĂŶƚĞĚĞƐĂdžĞƐ&S& %)&J&ůŝƋƵĞƌƐƵƌWŽƐŝƚŝŽŶĚĞů͛ŽƌŝŐŝŶĞ&K&
T= ůŝƋƵĞƌƐƵƌůĂƉŽƐŝƚŝŽŶĚƵůĂƉŽƐŝƚŝŽŶĚƵĐĞŶƚƌĞĚĞů͛ŽďũĞƚ͘&hŶƐLJƐƚğŵĞĚ͛ĂdžĞƐĂƉƉĂƌĂŠƚĂǀĞĐƐŽŶŽƌŝŐŝŶĞ&͗ů͛ŽƌŝŐŝŶĞ
ĐŽƌƌĞƐƉŽŶĚăůĂƉŽƐŝƚŝŽŶĚĞů͛ŽďũĞƚƐƵƌů͛ŝŵĂŐĞϱ&
U= R2.0&9#$%--%='+F%"0",&S&J&0#$%--%8'"/%,5">*%8&K&&
?ĠĨŝŶŝƌů͛ĠĐŚĞůůĞĞŶƐƵŝǀĂŶƚůĞƐŝŶƐƚƌƵĐƚŝŽŶƐĚƵůŽŐŝĐŝĞů;ŽŶͨ&".#"C)$&ͩĂŝŶƐŝĂƵůŽŐŝĐŝĞůů͛ĠĐŚĞůůĞĚĞů͛ŝŵĂŐĞͿ͘/ůĨĂƵĚƌĂ
+-"C)$,&0),&#$)<&4%".*0&#$&-2&0+:.$&VWH&$*&W7A&ĚŽŶƚŽŶĐŽŶŶĂŠƚůĂĚŝƐƚĂŶĐĞ͕ŝĐŝĐ͛ĞƐƚůĂůĂƌŐĞƵƌĚ͛ƵŶĞƉŽƌƚĞĚ͛ĂƌŵŽŝƌĞ
C)"&12"*&&TO&+6&=&W$.0$G&("$.&X&$.*,$,&-2&!2-$),&0<=>?@*7**
Y= ůŝƋƵĞƌƐƵƌů͛ŽŶŐůĞƚ@%8*&%8&$*&#B1".",&ů͛ŽƌŝŐŝŶĞĚĞƐ'/45%8'A5BCD&͗ĐŚŽŝƐŝƌů͛ŝŵĂŐĞϱ͘&
H8= ^ĂŝƐŝƌůĞŵŽƵǀĞŵĞŶƚĞŶĐůŝƋƵĂŶƚƐƵƌůĞĐĞŶƚƌĞĚĞů͛ŽďũĞƚ͘,9*(:1&*AB,CD2*9$*7/18$7$-&&͊ůůĞƌĂŝŶƐŝũƵƐƋƵ͛ăů͛ŝŵĂŐĞϭϰ͕
420&4-)0&
>ĞƐƉŽƐŝƚŝŽŶƐƐƵĐĐĞƐƐŝǀĞƐĚĞů͛ŽďũĞƚĞŶŵŽƵǀĞŵĞŶƚĚĞǀƌĂŝĞŶƚĂƉƉĂƌĂŠƚƌĞ&&
HH= VE:%19&:&'(A&Z64,"6$,&-2&*,2?$+*%",$&$.&+F%"0"002.*&S&H+6V"64,"62.*$A&[&H388\>H&6&&&
$*&$.&+%+F2.*&-$0&%4*"%.0&21*-%*&'.1",58'%5'4;%8&S\.&.%",&$*&(-2.+&&$*&&>*4/&"--4:%'E#F;E#F&S&$.&/,"0&&&
H7= ]),&-2&*,2?$+*%",$&"64,"6B$3&244$-$,&^8&-$&4,$6"$,&4%".*&V#B()*&#)&6%)!$6$.*A3&^H&-$&4%".*&0)"!2.*&4)"0&^7===$*+&
ũƵƐƋƵ͛ă'Y&V1".&#)&6%)!$6$.*A=&&
HM= P2-+)-$,&-2&#),B$&W&ƐĠƉĂƌĂŶƚůĂƉŽƐŝƚŝŽŶƐƵĐĐĞƐƐŝǀĞĚĞĐŚĂƋƵĞƉŽŝŶƚ;ĚƵƌĠĞĞŶƚƌĞĐŚĂƋƵĞŝŵĂŐĞͿĞƚů͛ŝŶƐĐƌŝƌĞƐƵƌůĞ
/,24F"C)$=&
&
2349/'&:&'/-*$&*'-&$.4.5&:&'/-*+*
HA &_,2.01B,$,&-$0&&,B0)-*2*0&#)&4%".*2/$&I!"6B+2&!$,0&-$&-%/"+"$-&`$/,$00"& &
7A _,2+$,&-2&,$4,B0$.*2*"%.&/,24F"C)$ &#%..2.*&-$0&4%0"*"%.0&<&#)&/-2E%.&$.&1%.+*"%.&#)&*$640=! !V2(0+"00$S&-$&
*$640&*3&%,#%..B$S&-$0&4%0"*"%.0&<A&
MA &&2=&a%#B-"0$,&-2&+%),($&42,&).$&1%.+*"%.&-".B2",$&#)&*;4$&S!"#$%&!$*&&F(:%19&:&'(G&"64,"6$,&-2&+%),($&
!(=&&b%*$,&-2&!2-$),&#)&+%$11"+"$.*&#",$+*$),&#$&-2&+%),($&0),&!%*,$&+%64*$&,$.#)=&c)$--$&$0*&0%.&)."*B&@&&
& c)$&,$4,B0$.*$>*>"-&@&
& +=&P%66$.*&-2&!"*$00$&#)&/-2E%.&B!%-)$>*>$--$&$.&1%.+*"%.&#)&*$640&@&
&
&
E';1.$*H*+*9:-%$1)$*$&*":9:I$1)$)*9/.)*0J1-$*
54.$18$*0$*%1.9'-;*
&
'2.+$)0$0&$*&(2-2;$)0$0&ůŽƌƐĚ͛ƵŶĞB4,$)!$&#$&+),-"./&