3ème FICHES DE REVISIONS N ° 7 DROITES REMARQUABLES

3ème
FICHES DE REVISIONS N ° 7
DROITES REMARQUABLES DANS LE TRIANGLE
Médiatrices des côtés d’un triangle
Définition : On appelle médiatrice d’un côté d’un triangle, la droite qui :
- est perpendiculaire à ce côté.
- passe par le milieu de ce côté.
Propriété : Les médiatrices des trois côtés d’un triangle sont concourantes en un point qui est le centre du
cercle circonscrit du triangle.
Le cercle circonscrit au triangle passe par les trois sommets du triangle.
Hauteurs d’un triangle
Définition : On appelle hauteur d’un triangle, une droite qui :
- passe par un des sommets du triangle.
- est perpendiculaire au côté opposé à ce sommet.
Propriété : Les trois hauteurs d’un triangle sont concourantes en un point appelé orthocentre du triangle.
3ème
Médianes d’un triangle
Définition : On appelle médiane d’un triangle, une droite qui :
- passe par un des sommets.
- passe par le milieu du côté opposé à ce sommet.
Propriété : Les trois médianes d’un triangle sont concourantes en un point qui est le centre de gravité du
triangle. Il est situé aux deux tiers de chaque médiane à partir du sommet.
On a : AG =
3
2
AA’
BG =
3
2
BB’
CG =
3
2
CC’
Bissectrices des angles d’un triangle
Définition : On appelle bissectrice d’un angle
A
ˆ
, la droite qui passe par le sommet A et qui partage l’angle en
deux angles de même mesure.
Propriété : Les bissectrices des trois angles d’un triangle sont concourantes en un point qui est le centre du
cercle inscrit du triangle.
Le cercle inscrit au triangle est tangent aux trois
côtés du triangle.
Les segments [IE], [IF] et [IG] sont des rayons
du cercle.
3ème
Cas particuliers : triangle isocèle et triangle équilatéral
Propriété : Si le triangle ABC est isocèle en A alors la médiatrice du côté [BC], la hauteur issue du sommet
A, la médiane issue du sommet A et la bissectrice de l’angle
A
ˆ
sont confondues.
Propriété : Si le triangle ABC est équilatéral alors ses droites remarquables sont confondues.
1 / 3 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !