Correction du contrôle n°1
Exercice 1 : Température des étoiles
1)a)Compléter la phrase suivante :
Plus un corps noir est chaud, plus son maximum d’intensité lumineuse est élevé, et plus la longueur d’onde λmax correspondant à ce maximum
est faible. De plus, la lumière émise est polychromatique (plusieurs couleurs).
b) Attribuer alors sur le document la température en K qui correspond à chaque courbe. Voir courbe.
2)a) Relever les valeurs de λmax pour chacune des courbes.
À 8000 K, λmax = 360 nm, à 7000 K, λmax = 410 nm, à 6000 K, λmax = 484 nm et à 5000 K, λmax = 575 nm.
b) Vérifier alors pour chacune d’elles la loi de Wien : λmax*T = 2,89.10-3 USI. Conclure.
λmax*T = 2,89.10-3 USI. À 8000 K, λmax*T = 360*10-9*8000 = 2,89. 10-3 USI. À 7000 K, λmax*T = 410*10-9*7000 = 2,87. 10-3 USI.
À 6000 K, λmax*T = 484*10-9*6000 = 2,90. 10-3 USI. À 5000 K, λmax*T = 575*10-9*5000 = 2,88. 10-3 USI.
Les valeurs calculées sont très légèrement différentes de la constante de Wien. Ainsi, les étoiles sont presque des corps noirs (mais pas tout à
fait! C’est-à-dire qu’elles renvoient une petite partie de la lumière qu’elles reçoivent).
3)a) Le λmax de la courbe de plus haute température appartient-il au domaine visible ?
Le λmax de la courbe de plus haute température est de 360 nm, ce qui appartient au domaine UV et non
au domaine visible (400nm < λ < 800 nm).
b) Un corps à cette température est-il pour autant invisible ? Justifier.
Un corps à cette température est tout de même visible, car il émet une bonne partie de son
rayonnement entre 400 et 800 nm (il est d’ailleurs plus visible que les corps à des températures
plus faibles, car l’intensité de la lumière y est plus élevée).
4) Quelles sont les couleurs dominantes des étoiles de classe F et K ? Justifier à l’aide du
cercle chromatique à droite :
λmax = 2,89.10-3/T. À 7000 K, λmax = 2,89.10-3/7000 = 4,13.10-7 m soit 413 nm => La couleur
Magenta/Violet est dominante d’après le cercle chromatique, pour les étoiles de classe F.
À 5000 K, λmax = 2,89.10-3/5000 = 5,78.10-7 m soit 578 nm => La couleur Jaune est dominante
d’après le cercle chromatique, pour les étoiles de classe K.
5) Le soleil est une étoile dont la température de surface est d’environ 6000 K. Voici le spectre de sa lumière :
a) Exprimer la température de surface du soleil en °C.
T(°C) = T(K) 273,2 = 6000 273,2 = 5727 °C.
b) La lumière d’un corps noir à 6000 K possède-t-elle un spectre continu ou discontinu ?
Comme tous les corps noir, un corps noir à 6000 K possède un spectre continu (voir courbes Ex 1).
c) Le spectre de la lumière solaire est-il continu ou discontinu ? Vous expliquerez les différences entre les deux en montrant le rapport entre le
spectre du soleil et sa structure interne. Vous devrez vous appuyer sur un schéma.
Le fond continu coloré provient de la lumière blanche polychromatique (plusieurs couleurs)
émise par les gaz chauds et denses de la surface de l’étoile (ou photosphère, du grec photos =
lumière).
Les raies noires d’absorption sont dues à des gaz plus froids et peu denses qui constituent
l’atmosphère de l’étoile (et en particulier la chromosphère, du grec chromos = couleur) et qui
absorbent certaines longueurs d’ondes spécifiques, dépendant des éléments qui la constituent.
C’est donc la structure d’une étoile qui fait que celle-ci produit une lumière donnant un spectre
de raies d’absorption, et en particulier la présence des gaz de sa photosphère et de sa
chromosphère.
Exercice 2 : Les niveaux d’énergie de l’hélium
Données : c = 3,00.108 ms.s-1 ; h = 6,63.10-34 J.s et 1 eV = 1,60.10-19 J
Voici le diagramme d’énergie (modifié) de l’atome d’hélium :
1) Indiquer sur le diagramme les états excités, l’état d’ionisation
et l’état fondamental. Voir diagramme.
2) Un atome d’hélium passe de l’état E1 à l’état E0.
a) Un photon est-il émis ou absorbé par l’atome ? Justifier.
Un photon est émis par l’atome, car il passe d’un état d’énergie
plus élevé, à un autre état d’énergie plus basse
(E1 = - 3,03 eV > E2 = -5,14 eV).
b) Calculer la longueur d’onde du photon mis en jeu puis sa
fréquence.
ΔE = - 5,14 (-3,03) = -2,11 eV soit
- 2,11*1,60.10-19 = - 3,38.10-19 J.
λ = = = 5,88.10-7 m = 588 nm.
ν = c/λ = 3,00.108/5,88.10-7 = 5,10.1014 Hz.
3) Un atome d’hélium dans l’état E1 absorbe un photon de
fréquence 4,49.1014 Hz.
a) Calculer la longueur d’onde du photon mis en jeu.
λ = c/ ν = 3,00.108/4,49.1014 = 6,68.10-7 m = 668 nm.
b) Calculer la différence d’énergie mise en jeu par cette
transition.
= = = 2,98.10-19 J soit
2,98.10-19/1,6.10-19 = 1,86 eV.
c) En déduire alors à quel niveau d’énergie passe l’atome d’Hélium. Expliquer.
= 1,86 eV et la seule transition, partant de E1 qui permette un tel écart d’énergie est la transition E1 => E2 ( = E2 E1 = -1,17 (-3,03) =
1,86 eV). De plus on nous parle d’absorption donc la transition a forcément lieu vers l’un des niveaux supérieurs, ce qui est le cas de E2.
4) Les 2 raies précédentes sont-elles présentes dans le spectre du soleil (voir exercice précédent) ? Conclure alors quant à la présence ou non
d’Hélium dans la chromosphère.
On observe bien les deux raies précédentes sur le spectre du soleil (voir 5) ). L’hélium est donc responsable de l’apparition de celles-ci, ce qui
prouve sa présence dans la chromosphère du Soleil.
5) Si un atome d’hélium passe de l’état fondamental à l’état ionisé, le photon mis en jeu est-il visible par l’œil humain ?
Pour savoir si un photon est visible par l’œil humain, on a besoin de connaître sa longueur d’onde λ.
Et pour un photon absorbé, λ = , or ici ΔE = 5,14 eV soit 5,14*1,60.10-19 = 8,22.10-19 J.
Ainsi λ = = 2,42.10-7 m = 242 nm, ce qui appartient au domaine UV (λ < 400 nm) . Le photon impliqué serait donc
invisible à l’œil nu.
Remarque : Plus la transition énergétique est grande, plus la longueur d’onde du photon émis ou absorbé est faible.
1 / 3 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !