1
TP d’optique n°2 :
Lunette astronomique et lunette de Galilée
Introduction
L’objectif de ce TP est d’étudier deux dispositifs optiques afocaux : la lunette astronomique et
la lunette de Galilée en simulant leur fonctionnement sur un banc d’optique.
Savoirs et savoir-faire à travailler
Utiliser des systèmes optiques dans les conditions de Gauss (alignement axial et
vertical, éclairage de l’objet,…).
Connaître les principales caractéristiques de l’œil et les défauts que présentent un œil
myope et un œil hypermétrope.
Connaître les principales caractéristiques d’une lentille astronomique et d’une lentille
de Galilée (type de lentilles présentes dans la lunette, position relative des deux
lentilles).
Connaître la définition du grossissement d’un système optique et savoir l’exprimer en
fonction des distances focales des deux lentilles.
Connaître la notion de cercle oculaire.
I. Mise en place du montage d’étude
Ces instruments permettent de voir des objets à l’infini. Pour simuler le fonctionnement de ces
instruments sur le banc d’optique, il faudra créer un objet (feuille papier millimétré
transparente) à l’infini. Un observateur place son œil à la sortie de la lunette (sur l’oculaire
de celle-ci en fait) : il faudra simuler le rôle de l’œil en utilisant une lentille et un écran.
La figure 1 représente le montage général de l’étude d’une lunette (astronomique ou de
Galilée) dans lequel les lentilles ont les rôles suivants :
La lentille L1 permettra de réaliser un objet à l’infini.
La lentille L2 représente l’œil
Les lentilles L3 et L4 constituent la lunette : la lentille L3 est une lentille convergente
tandis que la nature de la lentille L4 dépend du type de lunette. Elle est convergente
dans le cas d’une lunette astronomique et divergente dans le cas d’une lunette de
Galilée.
Fig.1 : montage d’étude d’une lunette
lampe condenseurdépoli papier millimétréL2 écran
L1 L3 L4
lampe objet à l'infini lunette oeil
lampe condenseurdépoli papier millimétréL2 écran
L1 L3 L4
lampe objet à l'infini lunette oeil
2
A. Travail préalable : vérification des distances focales des lentilles
Avant de commencer le TP, on souhaite vérifier les distances focales des lentilles disponibles
sur la table.
Citer des méthodes qui permettant de déterminer la distance focale d’une lentille.
En utilisant la méthode d’auto-collimation, mesurer la distance focale de chacune des
lentilles présentes sur la table. On précisera l’incertitude portant sur chacune des
mesures réalisées (voir remarque ci-dessous).
Cette méthode peut-elle être utilisée pour les lentilles divergentes ? Sinon quelle
méthode devrait-on utiliser ?
Remarque : précision des mesures sur un banc d’optique
Considérons un banc optique sur lequel sont installés un objet lumineux, un écran, et une
lentille convergente. La position de chaque élément est repérée par un index sur un réglet.
Les positions de l’objet et de l’écran sont fixées et l’on recherche la position x de la lentille
qui donne une image nette de l’objet sur l’écran. On constate qu’il y a toute une classe de
positions qui correspondent à cette condition et que xmin < x < xmax. La valeur vraie xvrai
appartient à cet intervalle et elle est inconnue. Si l’on fait une mise au point « au hasard »
toutes ces positions ont la même probabilité. Pour exprimer l’ensemble de ces résultats, on
retient la valeur médiane de l’intervalle précédent, x = (xmax + xmin)/2 comme mesure de x. On
associe ensuite à cette mesure une incertitude Δx telle que
3minmax xx
x
. Il y a une
probabilité de 95 % pour que le résultat de la vraie valeur xvrai soit compris entre x - Δx et x
+ Δx. Le résultat de la mesure s’écrit sous la forme x ± Δx.
B. Réalisation d’un objet à l’infini
Une lunette astronomique ou de Galilée sert à observer des objets très éloignés qui peuvent
être considérés comme infiniment éloignés de la lentille. On souhaite étudier le
fonctionnement de ces deux lunettes sur un banc d’optique. Il faut commencer par réaliser un
objet à l’infini.
1. Travail préparatoire
On souhaite obtenir une image à l’infini d’un objet réel en utilisant une lentille convergente.
Comment faut-il placer l’objet par rapport à la lentille pour obtenir une image à
l’infini ?
Cette image jouera le rôle d’objet à l’infini pour la lunette astronomique ou la lunette de
Galilée.
2. Réalisation expérimentale
A l’aide de la lentille L1 (f1 +20 cm) et de la feuille de papier millimétré
transparente, réaliser un objet à l’infini.
Vérifier sur l’écran placé en bout du banc optique l’image donnée par cet objet.
3
C. Modélisation d’un oeil
1. Description générale de l’œil
a) L’œil normal
L’accommodation
Pour qu’un objet soit perçu par l’œil, il faut que son image soit reçue sur la rétine. Cette
condition est réalisée pour la vision à l’infini (figure b ci-dessus) : le cristallin est alors au
repos.
Exprimer la vergence du cristallin au repos en fonction de la profondeur a du globe
oculaire.
Pour observer un objet rapproché, l’œil accommode : les muscles du cristallin augmentent sa
vergence.
Exprimer la vergence du cristallin observant un objet à la distance d de son centre
optique en fonction de a et d.
On appelle punctum remotum PR le point le plus éloigné pouvant donner une image nette sur
la rétine, l’œil étant au repos. Pour l’œil normal (ou emmétrope) le PR est à l’infini (figure b
ci-dessus) : la distance maximale de vision distincte Dm tend vers l’infini pour l’œil normal.
On appelle punctum proximum PP le point le plus proche pouvant donner une image nette sur
la rétine, l’œil accommodant au maximum. Pour l’œil normal le PP est à 25 cm de l’œil : la
distance minimale de vision distincte dm est de 25 cm pour l’œil normal.
Calculer la vergence maximale de l’œil normal.
La simulation disponible à l’adresse http://gilbert.gastebois.pagesperso-
orange.fr/java/vision/vision.htm simule le fonctionnement d’un œil normal.
b) Les défauts de l’œil.
Le cristallin de l’œil myope est trop convergent ou la profondeur de son globe oculaire est
trop grande (figure b ci-dessous).
Le cristallin de l’œil hypermétrope est trop peu convergent ou la profondeur de son globe
oculaire est trop faible (figure c ci-dessous).
La presbytie est une fatigue des muscles du cristallin qui survient avec l’âge : l’œil
complètement presbyte n’accommode plus.
4
c) Correction des défauts de l’œil
Quel type de lentilles doit-on utiliser pour corriger les défauts d’un œil myope ?
Quel type de lentilles doit-on utiliser pour corriger les défauts d’un œil hypermétrope ?
On pourra s’aider des indictions fournies dans la simulation disponible à l’adresse
http://gilbert.gastebois.pagesperso-orange.fr/java/vision/vision.htm.
2. Réalisation expérimentale
On souhaite modéliser l’œil par une lentille convergente, de distance focale f2 +15 cm,
jouant le rôle du cristallin et par l’écran de projection qui jouera le rôle de la rétine.
Placer l’écran à environ 1 m de la lentille L1.
Placer la lentille L2 devant l’écran et ajuster la distance lentille L2 écran de manière à
obtenir une image nette sur l’écran.
Comparer la distance lentille-écran avec la distance focale de la lentille L2.
Vérifier que la taille de l’image sur l’écran correspond à la taille de l’objet initial
(superposez pour cela une autre feuille de papier millimétré transparente).
La lunette astronomique et la lunette de Galilée vont nous permettre d’augmenter la taille de cette
image sur la rétine.
Remarque importante : pour la suite, on ne touchera plus à ces réglages
(distance séparant le papier millimétré de L1 et distance séparant L2 de l’écran)
!!! On pourra en revanche modifier la position de l’ensemble de l’œil.
Distance à régler de
sorte que l’image de
l’objet à l’infini soit
nette sur l’écran.
L2
Papier
millimétré
5
II. Étude de la lunette astronomique
Le fonctionnement d’une lunette astronomique est simulé informatiquement à l’adresse
http://www.sciences.univ-
nantes.fr/sites/genevieve_tulloue/optiqueGeo/instruments/lunette_astro.html.
A. Étude du grossissement
1. Préparation :
On considère une lunette astronomique, constituée par les lentilles convergentes L3 et L4. Le
foyer image de L3 correspond au foyer objet de L2 (cf figure 2).
Fig. 2 : Constitution d’une lunette astronomique
a) Tracé des rayons provenant de l’infini :
Tracer le chemin d’un rayon provenant de l’infini, parallèle à l’axe optique.
Montrer, à l’aide de cette construction que le système est afocal.
Retrouver ce résultat à l’aide des relations de conjugaison.
b) Détermination du grossissement (grandissement
angulaire)
Tracer le chemin travers la lunette) d’un rayon légèrement incliné d’un angle par
rapport à l’axe optique, passant par le centre O3 de la lentille L3.
On désignera par
l’angle des rayons sortant de la lunette, angle défini par rapport à l’axe
optique.
En déduire le chemin d’un rayon incident incliné par rapport à l’axe d’un même angle,
ne passant pas par le centre de la lentille L3.
Tracer le rayon sortant du système passant par le centre O4 de la lentille L4, incliné du
même angle .
D’où provient ce rayon ? Tracer le rayon incident correspondant.
Le rayon incident passant O3 (incliné d’un angle
en entrée) et ce rayon sortant passant par
O4 (incliné d’un angle
en sortie) se coupent en un point A, situé dans le plan focal image
de L3 (qui est aussi le plan focal objet de L4).
Faire figurer sur ce schéma les angles et . Placer le point A sur le schéma.
Donner l’expression de tan() en fonction de
AF '
3
et de la distance focale f3de L3.
Donner l’expression de tan(’) en fonction de
AF4
et de la distance focale f4’ de L4.
En faisant l’approximation des petits angles, déduire une expression du grossissement
de la lunette :
'
G
en fonction de f3’ et f4’.
2. Manipulation
Positionner la lentille L3 sur le banc optique précédent, assez loin de L1, en prenant
pour focale : f3 30 cm.
Placer la lentille L4, après cette lentille, en prenant pour focale : f4 10 cm. Sans
modifier la position de L3, modifier celle de L4 afin de former une image nette sur
L3 L4
F'3=F4
L3 L4
F'3=F4
1 / 8 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !