1S_P_I_PI_interactions_fondamentales 1/6 Chapitre PI LES

769796679 1/6
Chapitre PI
LES INTERACTI0NS FONDAMENTALES
EXERCICES P N°
I) LA CONSTITUTION DE LA MATIERE
En classe de seconde nous avons vu que la matière était constituée de
neutrons, de protons (les nucléons)et d'électrons.
Particule
Charge
Masse
neutron
0
mn = 1,67 . 10 - 27 kg
proton
+ e
mp = 1,67 . 10 - 27 kg
électron
- e
me = 9,10 . 10 - 31 kg
La charge élémentaire est e = 1,6 . 10 - 31 Coulomb. Toute charge
électrique est un multiple de cette charge élémentaire.
Application
Déterminer le rapport de la masse d’un nucléon sur celle de l’électron.
1835
10.1,9
10.67,1 31
27
e
n
m
m
La masse des électrons est négligeable devant celle des nucléons (voir
calcul de la masse molaire).
L'atome a un diamètre de l’ordre de 10 - 10 m, soit 1 angstrom.
Un atome est constitué d'un noyau central et d'un nuage électronique :
Le noyau (dimension de l'ordre de 10 - 15 m soit 1 fm [femtomètre], 100 000fois
moins que l’atome.)
Par exemple, l'atome de chlore possède un noyau central contenant Z =
17 protons positifs et N = 18 neutrons. Le nombre de nucléons est donc
A=Z+N=17+18=35. On symbolise ce noyau par .
Z = 17 est également appelé le numéro atomique.
Représentation d’un noyau
A A= nombre de masse (nb nucléons)
X Z= numéro atomique (nb protons)
Z X= symbole de l’élément
Loin du noyau se trouve le nuage électronique. Un atome étant électriquement
neutre posséde autant d'électrons négatifs dans le nuage électronique que de
protons positifs dans le noyau.
EXERCICE 6 P 23 ( et ou 5 P 23)
769796679 2/6
II) INTERACTION GRAVITATIONNELLE DE NEWTON (Vu en 2nde)
1) Loi de Newton
Deux corps A et B (ponctuels ou à symétrie sphérique de masse) de
masses mA et mB et séparés par une distance d, exercent l'un sur l'autre
des forces attractives
BAF/
et
ABF/
dirigée suivant la droite qui les joint
FA/B = FB/A =
2
.
dmm
GBA
G est la constante de gravitation. G = 6,67 . 10 - 11 (N.kg-
2.m2)
FA/B et FB/A: forces d’interaction gravitationnelle en N
d : distance entre A et B en m
mA et mB : masses de A et B en kg
2) Ordres de grandeur
Activité 1 :
1) Déterminer la force d’interaction qui s’applique entre deux objets A et B, à
symétrie sphérique, de masses mA = mB = 1 kg situées à la distance d = 1 m
l’un de l’autre.
FA/B = FB/A = G mAmB = 6,67.10-11 N
d2
2) Déterminer la force d’interaction qui s’applique entre un objet A, de masse mA =
1 kg et la Terre. L’objet étant situé à la surface de la Terre.
Données :
L’objet et la Terre présente une répartition de masse à symétrie sphérique.
Masse de la Terre MT = 5,98.1024 kg
Rayon de la Terre RT = 6380 km.
FT/A = FA/T = G mAMT = 6,67.10-11 x 1 x 5,98.1024 ≈ 9,8 N
RT2 (6380.103)2
Remarque :
Cette force d’interaction d’un objet situé au voisinage de la Terre peut être assimilée
au poids de cet objet. (Rappel : P = mg avec g intensité de la pesanteur = 9,81
N/kg)
P = mAg = 1 x 9,81 = 9,81 N donc g = G
2
T
R
MT
3) Déterminer la force d’interaction qui s’applique entre un objet A, de masse mA =
1 kg et le Soleil. L’objet étant situé à la surface de la Terre.
Données :
L’objet et le Soleil présente une répartition de masse à symétrie sphérique.
Masse du Soleil MS = 1,98.1030 kg
A
B
d
769796679 3/6
Rayon de la Terre RT = 6380 km.
Distance entre les centres de la Terre et du Soleil : d = 1,50.108 km.
FS/A = FA/S = G mAMs = 6,67.10-11 x 1 x 1,98.1030 ≈ 5,87.10-3 N
d2 (1,50.1011)2
4) Calculer la force d’interaction gravitationnelle qui s’applique entre deux protons.
Données :
mp = 1,67.10-27 kg.
distance moyenne proton proton d = 4,8 fm.
Fp/p = Fp/p = G mpmp = 6,67.10-11 x (1,67.10-27)2 ≈ 8,1.10-36 N
d2 (4,8.10-15)2
5) -N°7 P 23 e) 2 personnes 50kg à 1m
F=
.10.67,1
1*1 50*50
.67,6
*
*7
11
10
dd mm
G
N
6) Conclusion(comparaison des différentes intéractions).
L’interaction entre la Terre et un objet placé à son voisinage est
prépondérante par rapport à celle du soleil sur cet objet : L’objet va
donc rester à la surface de la Terre. On pourra aussi négliger
l’attraction entre deux objets par rapport à l’attraction terrestre.
L’interaction gravitationnelle assure la cohésion de la matière à
l’échelle de l’univers.
III) INTERACTION ELECTRIQUE DE COULOMB
1) Charges et interaction électrique TP P1
2) Conducteurs et isolants
Dans certains matériaux, on constate que les charges électriques peuvent se
déplacer. Ces matériaux sont appelés conducteurs et les autres isolants.
En général, les métaux sont de bons conducteurs car ils possèdent des électrons
libres de se déplacer.
Les solutions ioniques sont également conductrices (iosn porteurs de charge).
Lorsqu’aucune charge électrique n’est susceptible de se déplacer le corps est un
isolant.
Exemples : les solides ioniques (cristaux de sulfate de cuivre), le diamant, l’éthanol.
3)La loi de Coulomb
Deux objets ponctuels A et B, séparés par une distance d et portant des
charges qA et qB, exercent l'un sur l'autre des forces. Ces forces ont :
Même direction, celle de la droite qui joint les centres des corps
Même valeur :
Avec :
FA/B = FB/A = k qAqB
d2
769796679 4/6
o K : constante physique qui dépend du milieu, dans l’air
k=9.109NC-2m2 (sera donnée)
o FA/B et FB/A : forces d’interaction électrique en N
o qA et qB : charges en C
o d : distance en m
le sens dépend des charges :
si elle sont de même signe, l’interaction est répulsive
si elle sont de signes opposés, l’interaction est attractive
Remarque :
Cette interaction est un cas particulier de l’interaction électromagnétique.
4) Ordre de grandeur
Activité 2 :
Déterminer la force de répulsion électrique qui s’applique entre deux protons.
Données : qp = +e = 1,6.10-19 C.
distance moyenne entre deux protons d = 4,8 fm.
Fp/p’ = Fp/p’ = k qp2 = 9.109 x (1,6.10-19)2 = 10 N
d2 (4,8.10-15)2
Comparer les interactions électrique et gravitationnelle à l’échelle
microscopique.
L’interaction gravitationnelle est négligeable devant l’interaction
électrique de Coulomb au niveau macroscopique.
S’il n’existait que ces deux interactions dans le noyau atomique, que se
passerait-il ? Conclure.
La répulsion électrique est bien plus importante que l’attraction
gravitationnelle donc le noyau se disloquerait. Il existe donc une autre
interaction qui assure la cohésion du noyau : l’interaction forte.
IV) COMPARAISON DES INTERACTIONS
1) Analogies
Les forces gravitationnelle et électrique ont des expressions de la même forme
(proportionnelles au produit des grandeurs masses ou charges et inversement
proportionnelles au carré de la distance entre les deux objets).
Ces forces ont une portée limitée.
FA/B
FB/A
qA
qB
d
FA/B
FB/A
qA
qB
d
769796679 5/6
2) Différences
- Domaines de prédominance :
L’interaction électrique prédomine à l’échelle atomique, ionique et moléculaire.
(échelle microscopique)
L’interaction gravitationnelle prédomine à l’échelle astronomique.(objets
neutres)
L’interaction forte entre protons et neutrons s’oppose à l’interaction électrique
répulsive entre les protons du noyau. Elle prédomine dans le noyau atomique.
Les forces dues aux interactions gravitationnelle et forte sont toujours
attractives ; ce qui n’est pas le cas pour l’interaction électrique
1 / 6 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !