TP4
LES LOIS DE NEWTON
I. OBJECTIF
Mettre en relation la variation du vecteur vitesse
G
V
du centre d'inertie du solide avec la somme
des forces extérieures appliquées dans plusieurs situations.
II. Première loi de Newton ou principe de l'inertie.
Newton, mathématicien, physicien, astronome et philosophe anglais (1642 - 1727) :
1) Énoncé du principe de l’inertie par Newton
"Tout corps persévère dans son état de repos ou de mouvement uniforme en ligne droite dans lequel il se
trouve, à moins que quelque force n'agisse sur lui et ne le contraigne à changer d'état.
Les projectiles par eux-mêmes persévèrent dans leurs mouvements, mais la résistance de l'air les
retarde, et la force de la gravité les porte vers la Terre."
2) Expérience
On lance un mobile autoporteur (avec coussin d’air) sur une table horizontale. L'enregistrement 1 est celui
de son centre d'inertie.
1. Faire le bilan des forces agissant sur le mobile autoporteur.
Les représenter sur le schéma. Quelle est la valeur de la somme
vectorielle des forces extérieures
ext
F
agissant sur le mobile ?
2. Tracer deux vecteurs vitesse pour deux positions successives du
mobile; par exemple
3
V
et
5
V
(utiliser l'échelle 1 cm pour 0,20 m.s-1).
V3 =
24
AA
2.Δt
=


-2 échelle
-3
2,2 10 2
2 40 10
= 0,55 m.s-1 ;
3
V
« long » de 0,55 /0,20 = 2,8 cm
Points alignés et distance constante entre 2 points successifs donc
5
V
=
3. Que peut-on dire de la variation du vecteur vitesse
4
ΔV
=
5
V
-
3
V
?
4
ΔV
=
0
4. Déduire une autre formulation du principe de l’inertie (appelé plus souvent ‘’principe d’inertie’’)
Un corps soumis à des forces qui se compensent (dont la somme est nulle) est au repos ou en
mouvement rectiligne et uniforme
III. Approche de la deuxième loi de Newton.
A.
Première ex
périence
Attacher un mobile autoporteur à un fil assez long et faire
passer le fil dans une poulie située au bord de la table
horizontale. Accrocher au bout du fil une masse de 200 g.
Choisir T
=
60 ms pour l'intervalle de temps entre deux
impulsions. Eloigner le mobile autoporteur de manière à ce
que la masse soit en position haute puis lâcher le mobile et
enregistrer le mouvement de son centre d'inertie. On obtient
l'enregistrement 2.
Exploitation :
1. Faire le bilan des forces agissant sur le mobile autoporteur. Les représenter sur le schéma ci-dessus
sans soucis d'échelle .Quelles sont celles qui se compensent ? Donner la direction et le sens de la
somme vectorielle des forces extérieures
ext
F
agissant sur le mobile autoporteur
Le mobile est soumis à son poids
P
, à la réaction
R
de la table et à la tension
T
du fil ;
P
et
R
se compensent;
ext
F
=
P
+
R
+
T
=
0
+
T
donc
ext
F
s’identifie à
T
en direction,sens
et valeur
iii. x G
i. Sens du mouvement
v. x O
2. Tracer deux vecteurs vitesse pour deux positions successives du mobile; par exemple
et
(utiliser l'échelle 1cm 0,20 m.s-1 ). En quoi ces vecteurs sont-ils différents ? Qu'ont-ils de commun ?
V5 =
46
AA
2.Δt
=


-2 échelle
-3
3,2 10 2
2 60 10
= 0,53 m.s-1 ;
5
V
« long » de 0,53 /0,20 = 2,7 cm
V7 =
68
AA
2.Δt
=


-2 échelle
-3
6,2 10 2
2 60 10
= 1,0 m.s-1 ;
7
V
« long » de 1,0 /0,20 = 5,0 cm
3. Tracer ensuite la variation du vecteur vitesse
6
V
=
-
5
V
4. Comparer la direction et le sens de
6
V
avec la direction et le sens de
ext
F
. Quel est l'effet sur le
mouvement d'un solide, d'une force parallèle au vecteur vitesse du solide ?
6
ΔV
a la direction de
T
(du fil) et le sens de
T
; donc
6
ΔV
a la direction et le sens
ext
F
;
Une force parallèle au vecteur vitesse du solide modifie la valeur du vecteur vitesse mais
ne modifie pas sa direction
B.
Deuxiéme ex
périence
Attacher par un fil inextensible un mobile autoporteur à un point fixe
0
sur une table horizontale. Lancer le mobile autoporteur et enregistrer
les positions de son centre d'inertie avec un intervalle de temps T=
40 ms
entre deux positions successives. On obtient l'enregistrement 3 vu
de dessus.
1. Faire le bilan des forces agissant sur le mobile autoporteur. Les représenter (Vue de dessus)
sur le schéma en vue de profil sans soucis d'échelle. Quelles sont celles qui se
compensent ? En déduire à quelle force se résume le vecteur
ext
F
.
Le mobile est soumis à son poids ,à la réaction de la table et à la tension du fil
et se compensent donc = + + =
2. Tracer deux vecteurs vitesse pour deux positions successives du mobile ;
par exemple
2
V
et
4
V
(utiliser l'échelle 1cm 0,10 m.s-1 ).
V2 = A1A3/2 = 2,0 x 2 / (2 x 0,040) = 50 cm.s-1 = 0,50 m.s-1
V4 = A3A5/2 = A1A3/2 = V2
2
V
et
4
V
sont « longs » de 0,50 / 0,10 = 5 cm
3. Tracer ensuite la variation du vecteur vitesse
3
V
=
4
V
-
2
V
(
Vue de profil)
Vecteur -
V2
déplacé à l’extrémité de
V4
et
V3
déplacé au point A3
4. Comparer la direction et le sens d
e
3
V
avec ceux de
ext
F
.
est porté par le fil et dirigé vers son point d’attache O donc a la direction et le sens
de =
5. Quel est l'effet sur le mouvement d'un solide, d'une force perpendiculaire au vecteur vitesse du solide?
Une force perpendiculaire au vecteur vitesse modifie la direction du vecteur vitesse donc
dévie (ou courbe) la trajectoire
C. Conclusion.
Résumer les liens existant entre les forces extérieures appliquées à un solide et le mouvement du solide.
La somme des forces extérieures appliquées à un solide, a la direction et le sens du vecteur
variation de vitesse entre deux instants très proches autour de l’instant considéré.
xv. T
P
R
P
ext
F
R
P
R
T
T
vii. T
ix. R
xi. P
xiii. G
T
ext
F
V3
T
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !