TS – TP12: CHUTE D'UNE BILLE DANS UN FLUIDE:
RECHERCHE D'UN MODELE POUR LA FORCE DE FROTTEMENT
d'après un document de T.Boivin du lycée Thierry de Blois.
Principe: A l'aide de la méthode d'Euler, on calcule les variations de la vitesse d'une bille au cours de sa
chute, dans l'eau ou dans une solution de glycérol, pour un modèle donné; on compare les
résultats obtenus à la courbe expérimentale pour valider ce modèle.
Compte-rendu: La 1
ère
page (uniquement) de la feuille de calcul "méthode d'Euler" du classeur "chute bille
Euler" sera jointe au compte-rendu: on vérifiera, avant impression, qu'elle contient le début
des tableaux 1 et 2, le tableau 3 et le graphe (en format paysage).
I. Etude dynamique
Dans toute l’étude qui va suivre on considère un repère Oxy où l’axe Oy est dirigé vers le bas. On a ainsi
v
r
= v
y
.
j
r
et
y
vv =
r
(car v
y
>0 dans ce cas). On fait l’hypothèse que la force de frottement
f
r
à laquelle est soumise la bille
(en plus de son poids
P
r
et de la poussée d’Archimède
π
r
) est proportionnelle à la vitesse
v
r
telle que
vkf
r
r
.=
.
Préciser le système étudié, le référentiel d'étude et la chute étudiée (bille dans l'eau ou dans le glycérol).
Représenter sur un schéma l’axe Oy, le vecteur unitaire
j
r
puis les trois forces
P
r
,
π
r
et
f
r
Donner en fonction du vecteur unitaire
j
r
et de leurs normes l’expression des forces
P
r
et
π
r
Donner, en fonction de k, v
y
et
j
r
, l’expression de la force de frottement
f
r
.
Montrer que l’équation différentielle du mouvement de la bille suivant l’axe OY est donnée par une relation du
type :
y
y
y
vBA
dt
dv
a.==
avec A =
m
P
π
et
m
k
B=
.
Montrer que A se met sous la forme
= m
V
gA .
1.
ρ
où m est la masse de la bille, ρ la masse volumique du
fluide, V le volume de la bille et g l’intensité de pesanteur.
Vérifier que A 8,6 m.s
-2
pour la chute de la bille1 dans l'eau (ou A 8,5 m/s².pour celle de la bille1 dans le
glycérol). On rappelle : m = 6,9 g ; ρ(glycérol dilué) = 1,07 g.cm
-3
; r = 5,9 mm et g = 9,8 N.kg
-1
Ne connaissant pas la valeur de k, on utilise la vitesse limite de la bille atteinte au cours de sa chute pour
déterminer B. Comme on a alors
=
dt
dv
y
0, exprimer B en fonction de la vitesse limite V
lim
et A.
Calculer B pour le cas étudié.
FAIRE VERIFIER LES CALCULS PAR LE PROFESSEUR
II. 1
ère
modélisation de la force de frottement:
1) La méthode d'Euler:
En prenant des intervalles de temps t petits, d’après ce qui précède on peut écrire que
y
y
vBA
v.=
. En
remplaçant v
y
par la vitesse v de la bille, on en déduit la variation du vecteur vitesse
tBvAv =).(
.
Utiliser la calculatrice pour compléter numériquement les 4 lignes du tableau suivant en prenant t = 5ms
i
Date t
v
v
0 t
o
= 0 v
0
= 0 v
0
= (A-B.v
0
) . t =
1 t
1
= t = 0,005s v
1
= v
0
+ v
0
= v
1
=
2 t
2
= t
1
+ t = 0,01s v
2
= v
2
=
2) Résolution de l'équation différentielle, par la méthode d'Euler:
Afin d’obtenir ces mêmes résultats sur un grand nombre de valeurs, on utilise un tableur.
Ouvrir le fichier "chute bille Euler.xls" situé dans le dossier "F:/_ressources sciences physiques/chutesTS", puis
l'enregistrer dans votre dossier personnel en y ajoutant votre n° de table: "chute bille Euler-1.xls" par exemple.
La feuille nommée "méthode d'Euler" est constituée de divers tableaux :
- Le tableau 1 est relatif à l’hypothèse où
vkf
r
r
.=
- Le tableau 2 sera complété au paragraphe III. en modifiant cette hypothèse.
- Le tableau 3 permet de tracer 3 graphes de l’évolution de la vitesse en fonction du temps: les vitesses
calculées par la méthode d'Euler dans les tableaux 1 et 2 (courbes noire et bleue), ainsi que la vitesse
calculée à partir de l'expérience (courbe rouge).
Indiquer dans les cellules D3 et F3 les valeurs de V
lim
et A, pour le mouvement étudié.
Compléter le tableau ci-dessous puis écrire les formules correspondantes dans le tableau 1 de la feuille de
calcul (on rappelle que pour utiliser une cellule dont la ligne et la colonne doivent rester fixes lors d'un copier-
coller, on utilise le préfixe $ devant la ligne et devant la colonne)
Fonction
Cellule
Formule
A copier coller….
Calcul de t B11 …de B12 à B146
Calcul de B D7
Calcul de v D10 …de D11 à D146
Calcul de v C11 …de C12 à C146
Vérifier que les valeurs numériques obtenues sur les 3
premières lignes du tableau 1 correspondent à celles qui
ont été calculées précédemment.
Observer l'allure du graphe V
euler(1)
= f(t).
3) Comparaison de la solution numérique aux mesures:
La feuille "calcul de Vexp" permet de calculer les valeurs expérimentales de la vitesse de chute au cours du
temps pour la chute de la bille dans l'eau ou dans le glycérol dilué (pour cela, reprendre la méthode vue au TP
précédent) ou de rappeler ces valeurs, obtenues lors du TP précédent (pour cela, ouvrir le fichier "chutes-
noms...xls" déjà créé ou le fichier "chutes-corrigé", copier la sélection [A1:E26] de la feuille correspondant à la
chute étudiée et coller les valeurs dans la 1
ère
feuille du fichier "chute bille Euler-...").
Sélectionner et copier les valeurs de la vitesse V
exp
. Coller ensuite ces valeurs (collage spécial des valeurs
numériques seulement) à partir de la cellule K10 du tableau 3 (supprimer les éventuelles valeurs au delà de
t=0,68s). Le reste du tableau 3 (colonne I et J) est complété automatiquement à partir des calculs menés dans
les tableaux 1 et 2. Le graphe V
exp =
g(t) s’affiche automatiquement.
Comparer les courbes obtenues: V
euler(1)
et V
exp
en fonction du temps. Le modèle utilisé est-il satisfaisant pour
l'ensemble de ces mesures?
III. Amélioration du modèle:
L’hypothèse où la force de frottement est proportionnelle à la vitesse peut être améliorée en prenant f sous la
forme f = k.v
n
(n est un nombre positif, entier ou décimal). On a ainsi
jkvf
n
r
r
=
(avec v = v
y
)
Dans un 1
er
temps, on suppose que f est proportionnelle au carré de la vitesse :
jkvf
r
r
2
=
.
L’équation différentielle précédente devient:
2
y
y
BvA
dt
dv =
avec A =
m
P
π
( 8,6 ou 8,5 m/s²) et
m
k
B=
.
De la même manière que précédemment, la valeur de B peut être obtenue à l’aide de la vitesse limite V
lim
.
Indiquer la formule à utiliser pour calculer B.
Compléter le tableau ci-dessous afin d'utiliser la feuille de calcul (la fonction puissance s’obtient en utilisant la
touche ^ suivie de la valeur de l’exposant) :
Fonction
Cellule
Formule ou valeur
A copier coller….
Valeur de n F8
Calcul de B
(en utilisant la cellule F8) F7
Calcul de v F10 …de F11 à F146
Calcul de v
euler(2)
E11 …de E12 à E146
Comparer les 3 courbes obtenues. Le modèle où n=2 est-il plus satisfaisant que celui où n=1 ?
Trouver une meilleure valeur de n (n peut être décimal), en modifiant sa valeur dans la cellule F8.
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !