Première apparition des quanta : le rayonnement thermique, Planck

Page 1/5
PREMIERE APPARITION DES QUANTA
Le rayonnement thermique
Les premières lois du rayonnement sont établies en 1859 par Gustav Kirchhoff (physicien allemand
1824-1887). Il distingue le rayonnement thermique, l’émission de lumière par un gaz et son
absorption. En intercalant un prisme sur le trajet de la lumière on visualise son spectre, c'est-à-dire
l’étendue de ses couleurs.
spectre continu
spectre d'émission
spectre d'absorption
Premières expériences
Un clou en fer, un filament de tungstène chauffés émettent de la lumière qui passe du rouge au
blanc puis au bleuté lorsque la température augmente.
Thomas Wedgwood découvre en 1792 que les corps chauffés deviennent tous rouge à la même
température.
Ces expériences suggèrent que le rayonnement thermique ne dépend pas de la nature du corps mais
uniquement de sa température. Les études expérimentale et théorique vont confirmer cette hypothèse.
Modélisation du rayonnement thermique : le corps noir
Les expériences ci-dessus se prêtent mal à une étude précise. En effet il faut sans cesse chauffer le
corps pour le maintenir à une température donnée et le rayonnement que l’on veut étudier s’échappe
dans l’espace. D’où l’idée d’enfermer le rayonnement dans une « enceinte » qui est :
- initialement vide,
- portée à une température constante.
Ce système idéal s’appelle le « corps noir ». Pour pouvoir étudier le rayonnement, on perce un petit
trou dans l’enceinte et l’on peut alors faire l’analyse spectrale de la faible partie du rayonnement qui
s’échappe sans perturber notablement l’état du corps noir. Pratiquement, un four vidé et muni d’un
thermostat réalise une bonne approximation du corps noir.
Deux remarques :
- Pourquoi noir ? Parce qu’au zéro absolu, le corps n’émet aucun rayonnement thermique donc
il est noir. C’est sa propre « couleur ». (cf. Feynman Mécanique 2 & Raymond Castaing,
Cours de Thermodynamique.) - un corps bleu réémet du bleu ou une superposition de
couleurs qui nous apparaît bleue, un corps noir ne réémet rien.
- On peut introduire des corps dans l’enceinte. On montre qu’une fois l’équilibre thermique
réalisé, le rayonnement thermique est inchangé.
Page 2/5
Etude du corps noir
Le fonctionnement du corps noir
Lorsque l’enceinte est chauffée, les particules chargées qui constituent les parois vibrent. Ce qui
engendre des ondes électromagnétiques, de la lumière. C’est le processus d’émission.
Lorsque ces ondes arrivent sur une paroi, elles sont absorbées, les vibrations des particules
augmentent. C’est le processus d’absorption.
Lorsque l’équilibre est atteint, il y a à chaque instant autant d’ondes émises que d’ondes absorbées. Le
rayonnement thermique enfermé dans l’enceinte est alors caractérisé par son énergie
électromagnétique.
Remarque : Le corps noir à l’équilibre à une température fixée absorbe tout le rayonnement qu’il
reçoit et le réémet.
La densité volumique d’énergie électromagnétique
Plus le volume de l’enceinte est grand et plus l’énergie contenue est grande ; si le volume double,
l’énergie double, etc. Donc on s’intéresse à la densité volumique d’énergie :
em
E
uV
Eem est en joules (J), u est en joules par mètres-cube (J.m-3).
La connaissance de la densité d’énergie n’est pas suffisante pour caractériser le rayonnement du corps
noir. On veut connaître la densité d’énergie pour chaque couleur c'est-à-dire chaque fréquence.
Voici la gamme des fréquences et le nom des ondes ou rayonnements correspondants :
ondes radar
micro-ondes
infra rouges
visible
ultra violets
rayons X
rayons
fréquence (Hz)
10 10 10 10 10
8 11 14 17 20
ondes radio
L’échelle utilisée est logarithmique, l’unité représente un facteur 10.
Dans les spectres précédents, seules les parties visibles sont montrées.
La densité volumique spectrale d’énergie
Il est impossible de mesurer la densité volumique d’énergie à une fréquence unique, déterminée, mais
on peut mesurer la densité volumique d’énergie du dans une bande de fréquence de très petite largeur
. Cette densité est proportionnelle à la largeur de bande :
du d
La densité volumique d’énergie par unité de fréquence ou densité spectrale ρν est en J.m-3.Hz-1 c'est-à-
dire J.m-3.s.
Page 3/5
La catastrophe ultraviolette
Loi de Wien
Kirchhoff avait montré que la densité spectrale ne dépend que de la fréquence et de la température. Par
des considérations thermodynamiques et électromagnétiques (effet Doppler), Wien montre en 1894
que :
3fT
Dans cette équation la fonction f n’est pas encore déterminée mais Wien a montré qu’elle ne dépendait
que du quotient ν/T.
Et il établit en 1896 la loi qui porte son nom :
3exp T
α et β sont deux constantes (c'est-à-dire ne dépendant ni de T ni de ν) qui sont déterminées
expérimentalement.
Elle rend bien compte des résultats expérimentaux aux hautes fréquences. Et jusqu’en 1900 on croit
que cette loi est valable à toutes les fréquences.
Loi de Rayleigh-Jeans
Mais des mesures effectuées à Berlin montrent que la loi de Wien n’est pas valable aux basses
fréquences.
D’autre part, Lord Rayleigh, physicien anglais (John William Strutt 1842-1919) et James Jeans
(astronome, mathématicien et physicien anglais 1877-1946) aboutissent à une autre loi par des
considérations de thermodynamique et d’électromagnétisme (décompte des modes vibratoires) :
1
23
33
88kk
T
c c T
Remarquons qu’elle est bien de la forme ν3f(ν/T). Nous reviendrons sur les deux constantes : celle de
Boltzmann k et la célérité de la lumière c.
Elle rend bien compte des résultats expérimentaux aux très basses fréquences. Mais aux hautes
fréquences, elle conduit à la « catastrophe ultraviolette » : quand la fréquence augmente, l’énergie
aussi ; elle devient théoriquement infinie, ce qui ne peut physiquement être le cas car le corps noir
exploserait - ce qu’on ne constate pas !
Remarque : le nom de catastrophe ultraviolette n’a été donné à cette situation que beaucoup plus tard,
en 1911, par le physicien Paul Ehrenfest.
Enfin Planck vint !
Qui est Planck ?
Planck est né en 1858 et mort en 1947 à l’âge de 89 ans.
1901 1930
Page 4/5
Il passe sa thèse sur le second principe de la thermodynamique. Ce principe énoncé pour la première
fois en 1824 par Sadi Carnot traite de l’irréversibilité des phénomènes et définit une nouvelle grandeur
thermodynamique, l’entropie, qui mesure « le désordre » d’un système physique. En 1900, âgé de 42
ans, il introduit les quanta. Puis il travaillera sur la mécanique relativiste et la thermodynamique
statistique relativiste. Il est prix Nobel en 1918.
La loi de Planck
Planck cherche à raccorder ou interpoler les deux lois. Ses considérations de thermodynamique le
conduisent à la loi de Planck :
3
3
81
exp 1
hh
ckT
Trois constantes universelles interviennent dans cette loi. La célérité de la lumière c attachée à la
théorie de la relativité, la constante de Planck h qui joue un rôle fondamental dans la théorie quantique
et la constante de Boltzmann k liée à la thermodynamique statistique.
Leurs valeurs :
c = 2,99792458.108 m.s-1 3,00. 108 m.s-1
h 6,62618. 10-34 J.s 6,63. 10-34 J.s
k 1,38066. 10-23 J.K-1 1,38. 10-23 J.K-1
L’interpolation
Comment procède-t-il ?
Puisque le rayonnement du corps noir est indépendant de la matière constituant l’enceinte, Planck
décide de considérer la paroi la plus simple : une assemblée de résonateurs c’est à dire d’oscillateurs
constitués de masses fixées à des ressorts.
On note u1 l’énergie moyenne d’un résonateur et s1 son entropie.
Page 5/5
Planck s’intéresse à l’inverse de la dérivée seconde de l’entropie par rapport à l’énergie :
1
21
2
1
ds
Rdu
La dérivée première est toujours positive (c’est l’inverse de la température), la dérivée seconde décrit
donc le phénomène. Selon Planck, elle mesure l’irréversibilité des échanges d’énergie entre la paroi et
le rayonnement. De plus l’étude de l’entropie est en relation avec ses travaux antérieurs.
Grâce à la thermodynamique, il a calculé les deux expressions de R relatives aux lois de Wien et de
Rayleigh-Jeans et les a ajoutés :
R = RW + RRJ = -a u1 -b u12 (a et b sont deux coefficients)
Cela lui a donné une expression qui se ramenait à la loi de Wien aux grandes fréquences car RRJ est
alors négligeable devant RW et vice-versa. Ensuite il en a déduit ρν.
Planck propose sa formule à la Société de Physique de Berlin le 19 octobre 1900. Dans la nuit même,
un de ses collègues physiciens confronte la formule aux résultats expérimentaux. Et dès le lendemain
matin l’informe de son succès. Planck considère sa formule comme une « heureuse trouvaille ».
L’interprétation
Planck ne se satisfait pas de ce bon accord expérimental, il veut trouver l’interprétation théorique de
cette loi. Il lui faut partager, diviser l’énergie du rayonnement entre les N résonateurs de la paroi.
Il est conduit à considérer que les échanges d’énergie entre la matière et le rayonnement se font
par quantités déterminées, par « quanta » de valeur E = hν.
Le 14 décembre 1900, devant la Société Allemande de Physique, Planck explique l’interprétation
théorique qu’il dégage de la loi du rayonnement.
Il faut préciser que Planck mettra beaucoup de temps à croire lui-même à son interprétation. Einstein
sera, comme nous allons le voir, beaucoup plus hardi.
Continu et discontinu
Pourquoi cette interprétation est-elle si difficile à croire ? C’est le poids de l’Histoire.
La Physique a longtemps fonctionné selon un modèle continu avec un monde de la Physique rempli de
deux sortes « d’objets », la matière et les ondes. Ces deux objets apparaissent d’abord comme
continus.
A part les considérations atomistes de Démocrite, la matière a longtemps été vue comme continue,
c'est-à-dire sans vide et divisible à l’infini. Au XIXe siècle l’hypothèse atomique est revenue à la
surface pour expliquer les proportions fixes dans les réactions chimiques et les propriétés des gaz.
Les ondes jusqu’à l’apparition des quanta sont traitées comme continues. Leur énergie est répartie
continument dans l’espace et est divisible à l’infini.
De plus le phénomène lui-même, à savoir le rayonnement thermique, est continu : toutes les
fréquences y sont présentes, avec une plus ou moins grande intensité mais toutes sont là. On peut
s’étonner d’expliquer un phénomène continu par un processus discontinu. Dans l’interprétation
présentée par Planck, des échanges d’énergie discontinus entre la matière et les ondes expliquent le
rayonnement continu du corps noir.
Remarque : Le spectre du corps noir est continu mais le spectre des atomes est discontinu. Nous en
reparlerons.
1 / 5 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !