Cutting Plane Method: Theory, Applications, and Insights

Telechargé par Yasmine Cherfaoui
The Cutting Plane Method
Theory, Applications, and Practical Insights
Optimization Course
November 23, 2025
Optimization Course The Cutting Plane Method November 23, 2025 1 / 1
Course Overview
Optimization Course The Cutting Plane Method November 23, 2025 2 / 1
The Integer Programming Challenge
Consider the problem:
max 3x1+ 4x2
s.t. x1+ 2x28
3x1+x210
x1,x20 and integer
The Question: How do we solve this efficiently?
LP Relaxation: Remove integrality constraints solve easily
But: LP solution is fractional (2.67,2.67) with value 16
Gap: Integer solution is (2,2) with value 14 — we lose optimality!
Optimization Course The Cutting Plane Method November 23, 2025 3 / 1
Why Cutting Planes Matter
Naive Approach: Branch and
Bound
Enumerates tree of possibilities
Can be exponential in worst case
Slow for large instances
Smart Approach: Cutting Planes
Add constraints (cuts)
progressively
Tighten LP relaxation
Converge to integer optimum
Core Idea: Iteratively add constraints that:
1Cut off fractional solutions
2Preserve all integer feasible solutions
Optimization Course The Cutting Plane Method November 23, 2025 4 / 1
What is a Valid Cut?
Definition: A valid inequality (valid cut) for integer program (IP) is a
linear constraint αTxβsuch that:
1Is satisfied by ALL feasible integer solutions: αTxβfor all xX
(integer feasible set)
2Does not eliminate the integer optimum
Mathematically: If X={x:Ax b,xZn}, then αTxβis valid iff:
max{αTx:xX} ≤ β
Key Property: Valid inequalities define the integer hull PI= conv(X)
Optimization Course The Cutting Plane Method November 23, 2025 5 / 1
1 / 30 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans l'interface ou les textes ? Ou savez-vous comment améliorer l'interface utilisateur de StudyLib ? N'hésitez pas à envoyer vos suggestions. C'est très important pour nous!