BoardTutorial-1

Telechargé par Yankai Chen
The University of Sydney
School of Mathematics and Statistics
Board Tutorial 1
MATH1021: CALCULUS OF ONE VARIABLE
REAL AND COMPLEX NUMBERS
1. Let X={nZ|n25}.
(a) Rewrite Xas an explicit set of numbers.
(b) Decide which of the following statements are true and which are false:
(i) XZ(ii) XZ(iii) 5 X(iv) 26∈ X
2. If z= 2 iand w=4+3i, find
(a) z+w(b) zw(c) |z|(d) w(e) zw (f) z
w
3. Locate each of the following sets on the real number line and then express each as
an interval or as a union of intervals:
(a) xR|2x4
(b) xR| −1< x 1 or x5
(c) [2,5] (3,6]
(d) xR| |x1|>2
4. Express the following complex numbers in Cartesian form:
(a) 1 + i
1i
(b) (2 + 3i)(5 6i)
(c) 1
i3i
1i
(d) i123 4i94i
5. Solve the following equations over C:
(a) 3z24z+ 4 = 0 (b) z4= 1.
6. Sketch the following regions in the complex plane:
(a) {zC| |z| ≤ 3}
(b) {zC|Im(z)≥ −1}
(c) {zC| |zi|≤|z1|}
7. In each case decide whether or not the statement is true. Explain your an-
swer.
(a) The square of an imaginary number is always real.
(b) It does not make sense to write |z|>|w|when zand ware complex numbers
because the complex numbers are not ordered.
(c) Real numbers cannot be graphed on the complex plane.
Copyright c
2021 The University of Sydney 1
(d) When a real number is divided by a complex number the answer can never
be real.
8. Use a Venn diagram with three sets A,Band Cto show the following:
(a) ABC(b) (AB)C
Brief answers to selected exercises:
1. (a) X={−2,1,0,1,2}
(b) (i) True
(ii) False
(iii) False
(iv) False
2. (a) 2+2i
(b) 6 4i
(c) 5
(d) 43i
(e) 5 + 10i
(f) 11
25 2
25i
4. (a) i
(b) 28 + 3i
(c) 3
25
2i
(d) 9i
5. (a) 2
3±22
3i
(b) {1,1, i, i}
7. (a) True
(b) False
(c) False
(d) False
2
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !