
au2(x) + bu(x) + cx = 0(1)
(1) ⇒au3(x) + bu2(x) + cu(x)=0
u3= 0
(1) ⇒bu2(x) + cu(x)=0
u
(1) ⇒bu3(x) + cu2(x)=0
(1) ⇒cu2(x)=0
u2(x)6= 0 c= 0 bu2(x)=0
b= 0 a=u2(x)=0 a= 0 (x, u(x), u2(x)
3R3
u u =f−2Id
e1(f−2Id)3= 0 x=e1
((f−2Id)2(e1),(f−2Id)(e1), e1) = (u2(e1), u(e1), e1)
R3f
f(e1)=(f−2Id)(e1)+2Id(e1) = u(e1)+2e1
f(u(e1)) = (f−2Id+2Id)(u(e1)) = (f−2Id)(u(e1)+2Id(u(e1)) = u(u(e1))+2u(e1) = u2(e1)+2u(e1)
f(u2(e1)) = (f−2Id)(u2(e1)) + 2Id(u2(e1) = u3(e1)+2u2(e1)=2u2(e1)
B=
210
021
002
a2dim(SEP (f, a)) =
2 (v1, v2)f(v1) = av1f(v2) = av2
v3(v1, v2, v3)R3
f
B=
a0α
0a β
0 0 γ
γ=a
f(v3) = αv1+βv2+av3v0
2=αv1+βv2f(v3) = v0
2+av3