1
TP 01 : Calcul des paramètres linéiques d’une ligne aérienne
1.Paramètres linéiques longitudinaux
Selon que l’on prenne en compte la résistivité finie du plan de masse ou non, les paramètres linéiques
longitudinaux de la ligne de transport d’énergie peuvent être déterminés de trois manières différentes :
- La théorie des images (applicable quand la ligne se trouve au-dessus d’un plan parfaitement conducteur) ;
- La théorie de Carson (applicable pour tout plan de masse) ;
- La théorie des plans complexes fictifs (applicable pour des sols conducteurs mais nécessairement
homogènes).
Dans le spectre usuel de fonctionnement du réseau de transport d’énergie (qq. Hz à 10 MHz), on peut montrer
que la méthode du plan fictif conduit à des résultats identiques à ceux qu’on obtiendraient avec la méthode de
Carson, qui est plus exacte pour des fréquences élevées.
1.1 Méthode du plan complexe fictif (Carry)
La méthode consiste à introduire une profondeur de pénétration fictive dans le sol, complexe p telle que
l’image de chaque phase dans le sol soit située à une profondeur égale à la somme de la hauteur de la phase en
question et deux fois l’épaisseur de peau dans le sol (figure 1). Cette hypothèse provient de l’idée que l’apparition
de l’effet de peau dans le sol au champ magnétique variable en fonction du temps provoque le déplacement du
miroir du plan de masse d’une profondeur complexe de 2p, d’où la notion du plan fictif.
Les expressions donnant les impédances linéiques propres et mutuelles sont alors les suivantes :
 
i
i
ii a
ph
jZ 2ln
2
0
(1)
ij
ij
ij d
D
jZ '
ln
2
0
(2)
2p
h2p
2p
dij
D’ij
Dij
hi
Conducteur j
Interface
réelle
Interface fictive
2ai Conducteur i
d’ij
Figure 1.
Configuration géométrique pour la méthode du plan complexe fictif
2
Avec :
g
j
p2
(3)
p : épaisseur de peau complexe ;
Les parties réelles nous donnent les résistances linéiques propres et mutuelles, les parties
imaginaires donnent les réactances linéiques propres et mutuelles.
2.Paramètres linéiques transversaux
Le calcul des capacités propres et mutuelles passe par le calcul de la matrice des coefficients de potentiel ;
l’inversion de cette dernière permet d’obtenir la matrice nodale[C] des capacités linéiques.
Les coefficients de potentiel peuvent être calculés simplement à l’aide de la théorie des images.
i
i
o
ii a
h
p2
ln
2
1

(4)
j
i
j
i
o
ij d
D
pln
2
1

(5)
function [Z,Y]=parametre_lineique_ligne(NC,r,h,dh,sigsol,w);
% ------------------------------------------------------------------------
% SOUS PROGRAMME QUI PERMET LE CALCUL DES PARAMETRES LINEIQUES D'UNE LIGNE AERIENNE
% PAR LA METHODE DE CARRY;
% ---------------------------------------------------------------------
Mu0 = 4*pi*1e-7;
Eps0 = 8.85e-12;
p=sqrt(2/(j*w*sigsol*Mu0));
for km = 1:NC
for kl = 1:NC
if km ~= kl
d(km,kl)=sqrt(dh(km,kl)^2+(h(km)-h(kl))^2);
D(km,kl)=sqrt((h(km)+h(kl))^2+dh(km,kl)^2);
Dp(km,kl)=sqrt((h(km)+h(kl)+2*p)^2+dh(km,kl)^2);
end
end
end
for km = 1:NC
for kl = 1:NC
if km == kl
Z(km,kl) = (j*w*Mu0*log(2*(h(km)+p)/r(km)))/(2*pi);
pt(km,kl)=(1/(2*pi*Eps0))*log(2*h(km)/r(km));
else
Z(km,kl) =(j*w*Mu0*log(Dp(km,kl)/d(km,kl)))/(2*pi);
pt(km,kl)=(1/(2*pi*Eps0))*log(D(km,kl)/d(km,kl));
end
end
end
Y=j*w*inv(pt);
Remarque :
r : rayon du conducteur .
dh : distance horizontale entre les conducteur (d’ij dans la figure).
Dp : la distance entre le conducteur i et l’image du conducteur j (D’ij dans la figure).
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !