f n f x = 0
(1 + x)α, α ∈R1 + αx +α(α−1)
2! x2+··· +α(α−1)···(α−(n−1))
n!xn+o(xn)
√1 + x, α =1
21 + 1
2x−1
22·2! x2+1·3
23·3! x3−1·3·5
24·4! x4+··· + (−1)n−11·3·5·7···(2n−3)
2n·n!xn+o(xn)
√1−x, α =1
2, x −→ −x1−1
2x−1
22·2! x2−1·3
23·3! x3−1·3·5
24·4! x4− ··· − 1·3·5·7···(2n−3)
2n·n!xn+o(xn)
1
√1+x, α =−1
21−1
2x+1.3
22
1
2! x2−1.3.5
23
1
3! x3+1.3.5.7
24
1
4! x4+··· + (−1)n1·3·5·7···(2n−1)
2nn!xn+o(xn)
1
√1−x, α =−1
2, x −→ −x1 + 1
2x+1·3
22
1
2! x2+1·3·5
23
1
3! x3+1·3·5·7
24
1
4! x4+··· +1·3·5·7···(2n−1)
2nn!xn+o(xn)
1
1+x2, α =−1, x −→ x21−x2+x4−x6+··· + (−1)nx2n+o(x2n+1)
1
1−x2, α =−1, x −→ −x21 + x2+x4+x6+··· +x2n+o(x2n+1)
1
√1+x2, α =−1
2, x −→ x21−1
2x2+1·3
22·2! x4−1·3·5
23·3! x6+1·3·5·7
24·4! x8+···+ (−1)n1·3·5·7···(2n−1)
2n·n!x2n+o(x2n+1)
1
√1−x2, α =−1
2, x −→ −x21 + 1
2x2+1·3
22·2! x4+1·3·5
23·3! x6+1·3·5·7
24·4! x8+··· +1·3·5·7·(2n−1)
2n·n!x2n+o(x2n+1)
arcsin x x +1
2·3x3+1·3
2·4·5x5+1·3·5
2·4·6·7x7+1·3·5·7
2·4·6·8·9x9+···+1·3·5···(2n−1)
2·4···(2n)·(2n+1) x2n+1 +o(x2n+2)
arccos xπ
2−arcsinx =π
2−x−1
2·3x3−1·3
2·4·5x5− ··· − 1·3·5···(2n−1)
2·4···(2n)·(2n+1) x2n+1 +o(x2n+2)
arctanx x −1
3x3+1
5x5−1
7x7+··· + (−1)n1
2n+1 x2n+1 +o(x2n+2)
argshx x −1
2·3x3+1·3
2·4·5x5−1·3·5
2·4·6·7x7+··· + (−1)n1·3·5···(2n−1)
2·4···(2n)·(2n+1) x2n+1 +o(x2n+2)
argthx x +1
3x3+1
5x5+1
7x7+··· +1
2n+1 x2n+1 +o(x2n+2)