Table Dévelopements limités usuels

Telechargé par Aoulmi Nadia
0
f(x) = f(0) + f(1)(0)x+f(2)(0) 1
2!x2+f(3)(0) 1
3!x3+··· +f(n)(0) 1
n!xn+o(xn).
f n f x = 0
f(x)
g(x)lim
x0g(x)6= 0 DLnf(x)
DLng(x)x n
f(x) = DF (x)
dx DLnf(x)DLn+1F(x)
sinx x 1
3! x3+1
5! x5+··· + (1)n1
(2n+1)! x2n+1 +o(x2n+1)
cosx 11
2! x2+1
4! x4+··· + (1)n1
(2n)! x2n+o(x2n)
tanx =sin x
cos xx+1
3x3+2
15 x5+17
315 x7+··· +o(x2n+1)
ex1 + 1
1! x+1
2! x2+··· +1
n!xn+o(xn)
chx 1 + 1
2! x2+1
4! x4+··· +1
(2n)! x2n+o(x2n)
shx x +1
3! x3+1
5! x5+··· +1
(2n+1)! x2n+1 +o(x2n+1)
thx x 1
3x3+2
15 x517
315 x7+··· +o(x2n+1)
1
1+x1x+x2x3+··· + (1)nxn+o(xn)
1
1x1 + x+x2+x3+··· +xn+o(xn)
ln(1 + x)x1
2x2+1
3x31
4x4+··· + (1)n11
nxn+o(xn)
DLnn.
DLn+1 n+ 1.
f n f x = 0
(1 + x)α, α R1 + αx +α(α1)
2! x2+··· +α(α1)···(α(n1))
n!xn+o(xn)
1 + x, α =1
21 + 1
2x1
22·2! x2+1·3
23·3! x31·3·5
24·4! x4+··· + (1)n11·3·5·7···(2n3)
2n·n!xn+o(xn)
1x, α =1
2, x → −x11
2x1
22·2! x21·3
23·3! x31·3·5
24·4! x4− ··· − 1·3·5·7···(2n3)
2n·n!xn+o(xn)
1
1+x, α =1
211
2x+1.3
22
1
2! x21.3.5
23
1
3! x3+1.3.5.7
24
1
4! x4+··· + (1)n1·3·5·7···(2n1)
2nn!xn+o(xn)
1
1x, α =1
2, x → −x1 + 1
2x+1·3
22
1
2! x2+1·3·5
23
1
3! x3+1·3·5·7
24
1
4! x4+··· +1·3·5·7···(2n1)
2nn!xn+o(xn)
1
1+x2, α =1, x x21x2+x4x6+··· + (1)nx2n+o(x2n+1)
1
1x2, α =1, x → −x21 + x2+x4+x6+··· +x2n+o(x2n+1)
1
1+x2, α =1
2, x x211
2x2+1·3
22·2! x41·3·5
23·3! x6+1·3·5·7
24·4! x8+···+ (1)n1·3·5·7···(2n1)
2n·n!x2n+o(x2n+1)
1
1x2, α =1
2, x → −x21 + 1
2x2+1·3
22·2! x4+1·3·5
23·3! x6+1·3·5·7
24·4! x8+··· +1·3·5·7·(2n1)
2n·n!x2n+o(x2n+1)
arcsin x x +1
2·3x3+1·3
2·4·5x5+1·3·5
2·4·6·7x7+1·3·5·7
2·4·6·8·9x9+···+1·3·5···(2n1)
2·4···(2n)·(2n+1) x2n+1 +o(x2n+2)
arccos xπ
2arcsinx =π
2x1
2·3x31·3
2·4·5x5− ··· − 1·3·5···(2n1)
2·4···(2n)·(2n+1) x2n+1 +o(x2n+2)
arctanx x 1
3x3+1
5x51
7x7+··· + (1)n1
2n+1 x2n+1 +o(x2n+2)
argshx x 1
2·3x3+1·3
2·4·5x51·3·5
2·4·6·7x7+··· + (1)n1·3·5···(2n1)
2·4···(2n)·(2n+1) x2n+1 +o(x2n+2)
argthx x +1
3x3+1
5x5+1
7x7+··· +1
2n+1 x2n+1 +o(x2n+2)
f
arcsinx 1
1x2]1,1[
arccosx 1
1x2]1,1[
arctanx 1
1+x2R
chx shx R
shx chx R
thx 1th2x=1
ch2xR
argshx 1
1+x2R
argchx 1
x21]1,+[
argthx 1
1x2]1,1[
1 / 3 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !