4 David Z Albert
read off of a catalogue of the local physical properties at every one of the con-
tinuous infinity of positions in a space-time like that, and (ii) that whatever
lawlike relations there may be between the values of those local properties can
be written down entirely in the language of a space-time that - that whatever
lawlike relations there may be between the values of those local properties
are invariant under Lorentz-transformations. And what it is to pick out some
particular inertial frame of reference in the context of the sort of theory we’re
talking about here - what it is (that is) to adopt the conventions of measure-
ment that are indigenous to any particular frame of reference in the context
of the sort of theory we’re talking about here - is just to pick out some par-
ticular way of organising everything there is to say about the world into a
story, into a narrative, into a temporal sequen ce of instantaneous global phys-
ical situations. And every possible world on such a theory will invariably be
organizable into an infinity of such stories - and those stories will invariably
be related to one another by Lorentz-transformations. And note that if even
a single one of those stories is in accord with the laws, then (since the laws
are invariant under Lorentz-transformations) all of them must be.
The Lorentz-invariant theories of classical physics (the electrodynamics
of Maxwell, for example) are metaphysically compatible with special relativ-
ity; and so (more surprisingly) are a number of radically non-local theories
(completely hypothetical ones, mind you - ones which in so far as we know
at present have no application whatever to the actual world) which have
recently appeared in the literature.3
But it happens that not a single one of the existing proposals for making
sense of quantum mechanics is metaphysically compatible with special rela-
tivity, and (moreover) it isn’t easy to imagine there ever being one that is. The
reason is simple: What is absolutely of the essence of the quantum-mechanical
picture of the world (in so far as we understand it at present), what none
of the attempts to straighten quantum mechanics out have yet dreamed of
dispensing with, are wave-functions. And wave-functions just don’t live in
four-dimensional space-times; wave-functions (that is) are just not the sort
of objects which can always be uniquely picked out by means of any cata-
logue of the local properties of the positions of a space-time like that. As
a general matter, they need bigger ones, which is to say higher-dimensional
ones, which is to say configurational ones. And that (alas!) is that.
The next level down (let’s call this one the level of dynamical compati-
bility with special relativity) is inhabited by pictures on which the physics
of the world is exhaustively described by something along the lines of a (so-
called) relativistic quantum field theory - a pure one (mind you) in which
3Tim Maudlin and Frank Artzenius have both been particularly ingenious in con-
cocting theories like these, which (notwithstanding their non-locality) are entirely
formulable in four-dimensional Minkowski space-time. Maudlin’s book Quantum
Non-Locality and Relativity (Blackwell, 1994) contains extremely elegant discus-
sions of several such theories.