Endovascular, open surgical, and combined options
should be considered as they apply to the specific patient's
symptoms and angiographic findings. In the setting of
multilevel disease, the treatment of the popliteal artery,
when involved, can be critical.
The involvement of the popliteal artery disease in patients
with CLI has been studied. A landmark study by Graziani et
al evaluated and morphologically categorized diabetic sub-
jects with ischemic foot ulcers. In 417 consecutive patients
who underwent angiography, there were nearly 3000
lesions. More than 50% of the lesions were occlusions, of
which 75% were discovered in the tibial vessels. Of the
patients, 85% had popliteal or femoral-popliteal involve-
ment.
2
A similar study from the United States with a series of
more than 450 patients found most patients with CLI having
occlusions of the popliteal or tibial arteries.
3
Indications for the Procedure
Unlike the patients with claudication, patients with CLI
require an intervention for limb salvage or to decrease the
extent of amputation. Approximately 40% of patients with
CLI who are not able to undergo revascularization will
requireamputationinthenext6months.
4
As previously
mentioned, CLI usually presents a challenge given the
multilevel disease and patient's comorbidities. There are
2 major considerations in revascularization of patients with
CLI. If tissue loss, ulcer, or gangrene is present, the goal of
revascularization is to increase the blood flow to the lower
extremity to provide an acceptable tissue perfusion, which is
required for the healing process. The required blood flow for
tissue repair is more than the flow needed to maintain the
intact healthy tissue of the extremity. However, the long-term
patency is of less importance in this critical setting. In the
presence of rest pain without tissue loss or after the healing of
ulcers, the main purpose of the intervention should be
improving the patient's symptoms, requiring additional
concern about the long-term patency of the diseased vessel.
Involvement of the popliteal artery is important in both
clinical situations. Patency of the popliteal vessel is essential
to provide inflow into the tibial and the pedal vessels.
Procedural Steps
The patient should be positioned supine on the fluoro-
scopy table. Antegrade access in the ipsilateral common
femoral artery is preferred when possible as it provides
better support for the catheters and wires during difficult
interventions, decreases the fluoroscopy time to cross the
diseased aortic bifurcation and tortuous iliac vessels, and
requires shorter catheters and wires. Conversely, antegrade
access is more cumbersome and carries a higher risk in
obese patients. Furthermore, the use of closure devices is
not approved for this access.
With antegrade access, the patient's inguinal region as
well as the ipsilateral abdominal lower quadrant should be
prepared in advance. The access site on the skin is usually
more superior to the inguinal region. If excessive
abdominal fat is present, the hand that holds the access
needle is also responsible for displacing the fat superiorly
with its lateral margin. This helps to create a proper angle
and to avoid unnecessary soft tissue passage. It is impor-
tant to identify the actual arterial access site with fluoro-
scopy. Usually the distal one-third of the femoral head is
an appropriate landmark for the arterial puncture site.
Ultrasonography is a critical component of our practice in
establishing a proper arterial access.
After identifying the proper arterial access site on the
common femoral artery with fluoroscopic and ultrasono-
graphic guidance, a secure arterial access is established.
Initial angiographic evaluation of all of the lesions is
important as discussed previously. This provides the
angiographic information to assess the number, type,
and locations of the obstructing lesions as well as to
recognize the distal and proximal edges, identify the
collaterals, and evaluate the distal runoff along with the
strength and collateralization pattern within the foot.
Revascularization Options
Revascularization of a stenotic or occluded segment within
the popliteal artery follows traditional endovascular princi-
ples. Moreover, intraluminal recanalizations are essential to
avoid subintimal or reentry passages within the middle and
the distal popliteal artery. Subintimal recanalizations within
the popliteal artery increase procedural complications,
particularly at the level of the knee joint as well as near
the bifurcation into the tibial vessels, as they may cause
occlusion of vessel branches or dissections. Additionally, a
subintimal path limits the opportunity to perform atherec-
tomy. However, maintaining an intraluminal access may be
practically impossible in some lesions, especially given the
presence of a hard cap in the proximal end of the lesion.
Retrograde pedal or tibial access may be helpful in these
situations to maintain an intraluminal path. Nevertheless,
when a subintimal recanalization is performed, maintain-
ing a small proximal loop with the hydrophylic guidewire
is crucial to control the length of the subintimal dissection.
Additionally, reentry devices are available to not only
address the technical challenge of reentry but also help
control the location where reentry occurs, allowing the
protection of the middle and the distal popliteal artery if it
is patent. Surgical bypass is generally considered the
treatment of choice for lesions involving the middle and
the distal popliteal artery if the patient is a surgical
candidate and there is sufficient venous conduit.
Traditionally, balloon angioplasty is the primary endo-
vascular treatment for the popliteal artery lesions (Fig. 1).
Similar to the femoral artery, the use of plain old balloon
angioplasty (POBA), particularly for short, noncalcified
lesions, appears to have similar patency, target lesion
revascularization (TLR) rates, and symptom improvement
scores when compared with nitinol stent placement if the
vessel responds well to the initial angioplasty. This was
demonstrated in a study that included 246 patients with
popliteal artery stenosis who were randomized to POBA
CLI and the diseased popliteal artery
171