CERCLE EXINSCRIT DANS UN ANGLE Soient [Au) et [Cv) les

CERCLE EXINSCRIT DANS UN ANGLE
Soient [Au) et [Cv) les prolongements des côtés [BA] et
[BC] du triangle ABC.
Les bissectrices des angles CAu, ACv et ABC sont
concourantes.
Leur point de concours est le centre d'un cercle tangent à
[AC], [Au) et [Cv)
Ce cercle est appelé cercle exinscrit dans l'angle B du
triangle.
On peut, de la même manière, construire le cercle exinscrit
dans l'angle A et le cercle exinscrit dans l'angle C.
La figure ci-contre représente un triangle ABC et les trois
cercles exinscrits dans les angles de ce triangle
(Pour des raisons de clarté de la figure, les bissectrices ne
sont pas tracées)
La figure ci-contre représente à la fois le cercle inscrit dans
le triangle ABC et les trois cercles exinscrits dans les angles
de ce triangle
1
CERCLE ET DROITE D'EULER D'UN TRIANGLE
Leonhard EULER: Mathématicien suisse (1707-1783)
I- Cercle d'Euler:
Dans tout triangle:
- les milieux des côtés (K, L, M sur la figure ci-dessus)
- les pieds des hauteurs ( H, I, J sur la figure ci-dessus)
- les milieux des segments joignant l'orthocentre à chacun des sommets (R, S, T sur la figure ci-
dessus)
sont situés sur un même cercle.
Ce cercle est appelé cercle d'Euler ou cercle des neuf points du triangle
II- Droite d'Euler:
Dans tout triangle l'orthocentre (H), le centre de gravité (G), le centre du cercle circonscrit (O) et
le centre du cercle d'Euler (O') sont alignés.
La droite à laquelle ces points appartiennent est appelée droite d'Euler du triangle.
2
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !