Physiologie cardio circulatoire

publicité
Physiologie cardio circulatoire
Généralités
Les physiologies cardiaque et pulmonaires ont des points communs qui permettent de les rapprocher :
circulation, échanges.
Milieu intérieur
Les organismes supérieurs, notamment l’homme, ne peuvent fonctionner que si leurs cellules et tissus baignent
dans un milieu relativement constant dit « milieu intérieur ».
Ce milieu se caractérise par :
 une température
 une composition ionique (notamment H+)
 des hormones, des cytokines
 du CO2 et de l’O2 dissous
 divers solutés
Tous ces paramètres doivent être maintenus constants par des systèmes de régulation. Ceci suppose notamment
 Un apport en O2 et en nutriments, consommés par les cellules
 Une extraction du CO2 et des déchets, produits par les cellules
Le système cardio circulatoire est chargé de ces taches. C’est pourquoi c’est d’abord un système de transport.
Dispositif de transport et d’échange
Le système cardio circulatoire est composé d’un réseau de « tuyaux ». Au niveau microscopique, les cellules qui
tapissent ces tuyaux sont dotées de propriétés spécifiques. Elles synthétisent notamment des substances qui
peuvent
 Etre transmises à distance et avoir une action en dehors du système
 Participer à la régulation du système lui-même
La surface d’échange à un rôle primordial dans le fonctionnement du système.
Ex : les poumons
 Sont une zone d’échanges gazeux
 Représentent un lit vasculaire important
 Sont le siège de la production et de la destruction de certaines substances
Ils participent au contrôle général de l’organisme.
contenant /contenu
contenant
Les pompes cardiaques et les vaisseaux ont des propriétés mécaniques. Pour les connaître il faut mesurer et
analyser les grandeurs adaptées à leur description, principalement
pressions
débit
volume
remarque : quand on parle de tension artérielle il s’agit en fait d’une pression
contenu
Le sang est un tissu liquide dont les propriétés mécaniques peuvent être décrites à deux niveaux :
1. Assimilé à de l’eau, liquide incompressible de propriétés physiques connues : modèle valable dans les gros
vaisseaux
2. Liquide complexe, suspension de particules (GR en particulier) dont l’influence et les propriétés physiques
ne sont plus négligeables dans les petits vaisseaux.
La discipline concernée est appelée hémodynamique. Elle étudie :
 Les propriétés des contenants
 La rhéologie : analyse des propriétés mécaniques et circulatoires du sang.
1
Des variations anormales de ces propriétés peuvent être à l’origine de diverses pathologies.
Remarque : on n’étudiera pas les inter réactions biologiques entre les cellules sanguines et les cellules tapissant
les vaisseaux.
Zones d’échange
On distingue les zones de conduction et d’échanges dans le système cardio circulatoire.
Zones de conduction
Ex : cœur et artères
La pression y est forte, le débit important.
Le seul aspect envisagé est le transport de sang, qui nécessite certaines conditions mécaniques.
Zones d’échange
Les échanges concernent les gaz et certaines substances.
Ex :
 Tissus périphériques : diffusion d’une partie du sang dans les tissus (entrée / sortie)
 Rein
 Poumon : apport d’O2, retrait de CO2
Ces zones d’échanges représentent une fraction réduite de l’appareil cardio circulatoire en terme de
volume mais très élevée en terme de surface.
rôle des différences de pression et de concentration
Le passage de CO2 et O2 ne dépend que des différences de pression de part et d’autre de la paroi.
Remarque : dans le cas des poumons :
D’un coté CO2 et O2 sont sous forme gazeuse
De l’autre, dissous puis sous une forme indéterminée dans le sang.
Organisation générale
Système de convection forcée
Grandeurs significatives : Q , Q, P
On note
Q : volume liquidien
V : volume gazeux
dQ
Q 
: débit
dt
P : pression
2
Schéma de principe
2 cœurs, 1 poumon
Poumons
Veine
pulmonaire
Artère
pulmonaire
O2 ++
CO2 ++
organes
Notion de sang artériel et veineux
Le sang qui revient des organes par le système veineux est chargé de CO 2.
Attention :
les artères pulmonaires contiennent du sang veineux (riche en CO2, pauvre en O2)
les veines pulmonaires contiennent du sang artériel
La notation physiologique ne recouvre donc pas la notation anatomique.
En physiologie :
 Le sang veineux est toujours riche en CO2 et pauvre en O2 : il va vers le poumon
 Le sang artériel est toujours riche en O2 et pauvre en CO2 : il sort du poumon.
On mesure les quantités de CO2 et d’O2 contenues dans le sang veineux et surtout le sang artériel.
La composition du sang artériel est une grandeur fondamentale en physiologie et en clinique cardiaque et
pulmonaire : on étudie notamment [CO2], [O2], [H+]
Elle caractérise le fonctionnement du cœur, des poumons, et leurs interactions.
En réanimation c’est la composition du sang artériel qui permet de contrôler la physiologie du patient (réglage du
respirateur).
Répartition des débits
On considère séparément les 2 pompes cardiaques
3
D’un point de vue hémodynamique les 2 cœurs sont en série. Les débits sont donc les mêmes au moins en
moyenne.
Circulations nourricières et circulations fonctionnelles
Circulations nourricières
Ce sont des circulations locales dans certains organes ou tissus. Elles ont pour rôle :
 L’apport des substances nécessaires au fonctionnement de l’organe (principalement O 2 et glucose)
 Le retrait des déchets
Ex :
Circulation coronaire (système artériel irriguant le cœur)
Circulation cérébrale
Circulation musculaire
Circulations fonctionnelles
Leur but n’est pas de nourrir les organes. Elles participent aux échanges.
Circulation rénale
4
Rôle : échange de
 Eau
 Electrolytes
 Substances diverses
Circulation hepato splanchnique
Rôle : récupérer ce qui est passé à travers le tube digestif
Circulation cutanée
Rôle majeur : thermorégulation
Le débit est réglé en fonction des échanges thermiques entre le milieu intérieur et le milieu extérieur
Cette circulation n’est pas toujours en fonction : il existe une plage de température ou les échanges thermiques
sont quasi nuls.
Circulation foeto placentaire
Rôle : fournir au fœtus les substances dont il a besoin
Les circulations nourricières du cœur et du cerveau sont prioritaires.
Contrairement aux circulations fonctionnelles dont on peut se passer un certain temps, les circulations
nourricières sont toujours nécessaires.
Ex :
déficience de la circulation coronaire  infarctus
déficience de la circulation nourricière du cerveau  coma
déficience de la circulation nourricière des muscles  arrêt impératif de l’exercice.
Tous les organes n’ont pas un fonctionnement équivalent. Il est nécessaire que des systèmes de réglage modulent
le débit relatif vers chacune des circulations en fonction de l’état physiologique.
Ex :
Saignement
 Baisse du volume sanguin
 Activité cardiaque plus difficile
 Baisse du débit
Le système de régulation donne la priorité aux circulations coronaire et cérébrale. Il peut stopper certaines
circulations fonctionnelles, comme la circulation rénale(non prioritaire). Si c’est pendant un certain temps il y a
insuffisance rénale.
Si on stoppe l’hémorragie, les circulations fonctionnelles se remettent en place.
Remarque : En cas de dysfonctionnement, la composition du milieu intérieur varie.
Débits locaux
On note Q le débit principal et qi les débits locaux. Ceux ci sont différents et variables. Ils sont nécessaires à
l’analyse d’une situation pathologique.
Pourcentages des débits locaux
Coronaire (qc)
Cérébrale (qcer)
Musculaire au repos (qm)
Hepato splanchnique (qH-S)
Rénale (qr)
Cutanée (qcut)
Os
Autres
3%
14 %
15 %
6%
21 %
6%
5%
8%
5
Les autres circulations sont les circulations nourricières de certains organes possédant une circulation
fonctionnelle. Les deux circulations sont anatomiquement distinctes mais la première est faible devant la
seconde.
Ex : rein

Circulation fonctionnelle :

Circulation nourricière :
Q
1 % de Q
21 % de
Application : effort musculaire
Augmentation de l’activité musculaire  augmentation de qm en %
Augmentation de l’activité cardiaque  augmentation de qc
Production de chaleur : nécessité de thermoréguler  augmentation de qcut (particulièrement si il fait chaud)
Si en plus on digère pendant l’effort  augmentation de qH-S
 augmentation de
Q
Le système cardio circulatoire ne peut pas assumer l’augmentation de Q au delà d’une certaine limite.
Il faut faire un choix entre
Arrêter l’effort
Arrêter la thermorégulation
Arrêter la digestion éventuelle
Dans certaines conditions la température meut aller jusqu'à 38, 39 voir 40 °C. Un mécanisme de régulation
interne la laisse monter dans la limite du raisonnable pour ne pas utiliser trop de sang en thermorégulation.
Dans beaucoup de situations il faut faire un choix semblable. Il est important de comprendre comment le
système effectue ces choix en fonction du contexte.
Ex :
en cas d’hémorragie, les fonctions du rein sont déficientes (insuffisance rénale : cf. ci dessus)
On peut donner un médicament qui augmente qr mais cette augmentation se fait au détriment de qc ce qui peut
entraîner la mort.
Circulation pulmonaire et circulation systemique
On parle également de petite et grande circulations
La petite circulation va de l’entrée du VD jusqu'a la sortie de l’OG.
La grande circulation va de l’entrée du VG jusqu'a la sortie de l’OD.
Ces deux circulations sont en série. Le débit
Q y est donc le même.
Veines

pulmonaires Q
Aorte
OG
Q
Artères
systemiques
VG
Capillaires
pulmonaires
Sang
arteriel
Capillaires
systemiques
VD
OD
Veines
caves
Artères
pulmonaires
Les capillaires systémiques font partie de différents organes.
L’activité de l’organe détermine
Le débit sanguin
La composition en O2 et CO2 du sang veineux
6
veines
systemiques
Sang
veineux
Les sangs veineux des veines systémiques ont des compositions différentes. Ils se mélangent dans le VD. On
parle de sang veineux mêlé. Sa composition en O2 et CO2 est la moyenne des compositions des sangs veineux
en provenance des organes pondérées par les débits correspondants.
C’est le sang veineux mêlé qui est représentatif du fonctionnement global de l’organisme (activité métabolique
moyenne). En clinique, “sang veineux” signifie “ sang veineux mêlé”.
Par contre, la composition du sang artériel est identique dans toutes les artères. En effet il n’y a pas d’activité
métabolique de la sortie du poumon jusqu'aux artérioles. Le sang artériel ne participe à aucun type d’échange. Sa
composition ne varie donc pratiquement pas.
On parle de système de conduction : sa seule fonction est d’amener le sang jusqu'aux capillaires.
clinique
En clinique, on prélève du sang artériel par les artères périphériques, plus faciles d’accès.
Pour prélever du sang veineux, il faut accéder à l’artère pulmonaire. (cf. ci dessous)
Mesure de Q : il faudrait pouvoir se placer dans l’aorte. Or il est impossible de piquer directement. On évite
également de piquer dans une artère périphérique pour remonter ensuite à cause du risque de saignement.
On introduit un cathéter dans une veine périphérique, puis on remonte et on passe à travers le cœur droit. On
peut ainsi se placer dans l’artère pulmonaire, ce qui permet (avec un appareillage adapté)
De mesurer Q
De mesurer P
De prélever du sang veineux mêlé.
Le cathétérisme de l’artère pulmonaire est fondamental en réanimation (suivi hémodynamique)
Système resistif et système capacitif
Système resistif
Les deux cœurs assurent le même débit. Mais le VG transmet beaucoup plus d’énergie au sang que le VD. La
pression dans l’aorte est plus élevée que dans l’artère pulmonaire.
En effet le VG doit propulser le sang jusqu’aux artérioles, qui présentent une résistance considérable.
Analogie électrique :
Pression =
tension
Débit =
intensité
Cœur =
générateur
Capillaires =
résistance
A l’entrée de chaque organe, on peut considérer qu’il existe un « robinet » pratiquement fermé à l’état normal.
Pour augmenter le débit dans un organe le système de régulation ouvre ce robinet : la résistance diminue et le
débit augmente.
Le système resistif va donc du VG jusqu'aux artérioles. Il se caractérise par
Une résistance importante
Un débit constant
Une pression forte à l’entrée
Le système resistif est commandé de façon active (i.e. qui nécessite de l’énergie). par l’ouverture des artérioles.
L’énergie est fournie par le VG.
Système capacitif
A l’opposé, le reste du système est dit capacitif.
En effet les artères pulmonaires opposent une résistance faible au passage du sang. La pression à la sortie du
cœur droit est donc plus faible.
En outre les veines sont capables de changer de volume : on parle de système compliant.
Le système capacitif est commandé de façon passive (pas de consommation d’énergie) par la variation du
volume Q.
En raison de la différence entre ces deux modes de fonctionnement il est nécessaire que le rôle, les propriétés
anatomiques, les structures physiques et le métabolisme des deux ventricules soient également différents.
7
Téléchargement