16/10/2015__(mise à jour 22/10/2015)
(a mettre dans les affaires du chercheurs)
Je préfére compléter directement le THM d'Ampère .
https://www.youtube.com/watch?v=kqNhPo3z6iI
4ieme équation de Maxwell .
On prend le théorème d’Ampère
B.
dl =μ0I
B.
dl
μ0
=I
et on l'applique sur
un condensateur de forme circulaire pour bien comprendre .
Le cylindre magnétique peut être compris comme le conducteur lui même puisque
I=
B.
dl
μ0
donc à partir de se moment on se pose la question du comment va passer
le courant puisqu'il a un vide entre les plaques du condensateur !
La solution est simple , il suffit d'utiliser la charge sous sa forme du flux électrique
donné par le thm de Gauss
ϵ0
E.
ds=Q
On a
I=dQ
dt
donc
IG=ϵ0
E
t
et il reste a compléter le THM d'Ampère .
(J'appel
IG
le courant de Gauss puisque c'est son THM , qui correpond au
courant de déplacement introduit par Maxwell sous la forme J)
B.
dl =μ0(Ic+IG)0Ic+μ0ϵ0
E
t
Ensuite on remplace
Ic=Iconducteur
par le flux
de la charge volumique a travers la section du contour C du flux magnétique .
B.
dl0
J.
ds
Se qui donne
et
comme la surface fermer dans le 2ieme membre peut être pris de façon arbitraire
entre les 2 plaque du condensateur pour continuer la charge puisque seul compte la
capture du flux electrique qui fait passer le courant .
on peut utilisé la propriété des intégral pour rentrer le tout dans une seule intégral
puisque la surface traverser par les courants de Gauss peut étre plaqué exactement
contre la surface des plaques du condensateur .
B.
dl =μ0(Ic+IG)0
J.
ds0ϵ0
E
t
Et comme la somme de 2 intégrals est
l'intégral des 2 intégrants on rentre le membre de droite dans une seule intégral de
surface .
Sa donne la forme global de la 4ieme équation de Maxwell
B.
dl =μ0(Ic+IG)=μ0
J0ϵ0
E
t.
ds
.
le THM de Stockes appliquer dans le premier membre ramene la circulation
magnétique sur le contour c au flux du rotationel de B a travers la même surface que
celle du 2ieme membre .
Sa donne dans le premier membre
B.
dl=
Rot (
B).
ds
donc
Rot (
B).
dl =μ0
J0ϵ0
E
t.
ds
, on élimine les intégral puisqu'on parle de
la même surface dans les 2 membre , se qui donne la 4ieme équation local de
Maxwell .
Rot (
B)=μ0
J0ϵ0
E
t
Concernant le THM d'Ampère que je compléte comme ça , es que c'est en général ou
seulement avec un circuit qui a un condensateur ? ...c'est général puisque lorsque le
courant est constant on a B constant donc Rot(E)=0 se qui fait que E est comme un
champ electrostatique donc aprés avoir sortie la dérivé et les constante de l’intégral
du 2ieme membre du thm complet
B.
dl =μ0Ic0ϵ0
E
t
on peut le suprimer
puiqu’on sait que le flux d’un champ electrostatique à travers une surface fermer est
nul
E.
ds=0
et on retrouve le THM d'Ampère habituel
B.
dl =μ0Ic
.
____________________________________________
Le conseiller du Führer
FB
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !