1
Une petite histoire de l’électricité
1 – De la nature de l’électricité aux grandeurs électriques
L’électricité est un mouvement de particules chargées : des électrons dans les métaux des fils électriques,
des ions dans les solutions électrolytiques.
Ces particules chargées sont mises en mouvement sous l’action d’une différence de potentiel (ou d.d.p.
exprimée en volts), un peu comme de l’eau tombe d’une chute (on parle dans ce cas, en mécanique, d’une
variation d’énergie potentielle de pesanteur).
Exemple : la formation de l’éclair et du tonnerre.
Lors d’un orage, les mouvements de masses d’air entraînent des phénomènes d’électrisation qui peuvent
conduire à la modification de l’état électrique des protagonistes. Cet état électrique est défini en tout point
par ce qu’on appelle son potentiel électrique V. En particulier, le sol et les nuages peuvent ne pas être
dans le même état électrique, c’est-à-dire avoir la même valeur de potentiel V : on dit dans ce cas qu’il
existe une différence de potentiel ou tension entre le sol et les nuages. Cette d.d.p. est évaluée en volts
(symbole : V) à l’aide, par exemple, d’un voltmètre.
Lorsque cette différence de potentiel devient suffisante (champ voisin de 15 000 V par mètre), l’air
devient conducteur d’électricité et un éclair se forme : il va permettre de rétablir l’équilibre électrique
entre le sol et les nuages par transfert d’électrons (ou courant électrique). Cet éclair est visible car la
décharge électrique surchauffe les gaz sur son passage (jusqu’à 30 000°C) et les ionise : l’ionisation des
gaz provoque l’émission lumineuse dont la couleur dépend fortement de l’humidité de l’air ambiant
(blanc par air sec, rouge par air humide, bleu par temps de grêle). Le tonnerre entendu est en fait une onde
acoustique résultant de la brusque dilatation de l’air surchauffé par l’arc électrique.
Au laboratoire ou à la maison, où l’on a besoin d’électricité continue (piles par exemple), la différence de
potentiel est assurée par un générateur, dont le rôle est de mettre les particules chargées en mouvement en
maintenant ses deux bornes (borne + et borne –) à des potentiels électriques différents : l’un des potentiels
est supérieur à l’autre, comme le haut de la chute d’eau est à altitude plus élevée que le bas. La borne de
potentiel supérieur est indiquée (+), l’autre est indiquée (–). En fait, la borne (+) présente un excès de
charges (+) par rapport à la borne (–), et si les deux bornes sont reliées par un conducteur électrique (fil,
circuit électrique, solution électrolytique), les particules chargées vont circuler entre les deux bornes afin
d’essayer de rétablir l’équilibre entre les bornes (+) et (–).
Par convention, le potentiel électrique de la Terre est nul ; il sert de référence pour déterminer le potentiel,
positif ou négatif, des autres points. Conséquence : on ne connaît pas le potentiel électrique d’un point ;
on a seulement accès à la différence de potentiel entre ce point et un autre. On parle aussi de la tension
entre deux points.
Quelques tensions courantes :
Orage : 100 millions de volts (0,1 GV ou 100 MV)
Expériences d’électrostatique : 400 000 volts (400 kV)
Tension de secteur EDF : 230 V
Batteries de véhicules légers : 12 V
Nuage : potentiel Vnuage
Sol : potentiel Vsol
Tension ou ddp
Usol-nuage = Vsol – Vnuage
Classe de 1
ère
S
2
Piles : 1,5 V
Electronique : quelques millivolts (mV)
Pour la suite, nous considérerons la conduction dans le métal, à l’aide d’électrons. Lorsque le conducteur
métallique est soumis à une différence de potentiel, ses électrons se mettent en mouvement et forment un
courant électrique ; ce mouvement se caractérise par un flux d’électrons appelé intensité du courant
électrique, notée I et définie par
dq
I
dt
où dq représente la charge électrique (en coulombs C) qui traverse la section unité du conducteur pendant
la durée dt (en secondes s). L’intensité I s’exprime en ampères (A), unité équivalente au C.s-1. C’est un
peu comme le débit de la chute d’eau (même si cette analogie soulève quelques problèmes) : l’intensité
est une mesure du débit de charges électriques dans le circuit.
2 – De la mesure des grandeurs électriques
Compte tenu de sa définition, la tension UAB = VA– VB entre les points A et B se mesure à l’aide d’un
voltmètre qui se place en dérivation sur la portion AB de circuit à analyser : on mesure la différence de
potentiel entre les deux points ou bornes considérées.
En revanche, l’intensité I du courant électrique se mesure à l’aide d’un ampèremètre qui se place en série
au point du circuit à analyser : pour compter les électrons, et en déduire la charge qui traverse la section
de circuit à chaque seconde.
Sur les schémas, les représentations sont les suivantes.
Par convention, l’intensité I se déplace en sens inverse des électrons dans le circuit : ces derniers se
déplaçant de la borne – du générateur vers sa borne + (à l’extérieur du générateur), le sens du courant est
indiqué de la borne + du générateur vers sa borne – à l’extérieur du générateur.
L’intensité I du courant est une grandeur algébrique : elle peut être positive ou négative ; dans ce dernier
cas, cela signifie que le sens réel du courant est inversé.
La ddp indiquée pointe sur le point dont le potentiel est le premier : on mesure ici VA– VB = UAB car la
flèche pointe sur A.
Tout comme l’intensité I, la tension UAB est une grandeur algébrique. De manière habituelle, cependant,
on se débrouille pour qu’elle soit positive, en respectant les conventions suivantes. Le sens réel du
courant étant tout d’abord établi (soit I > 0, donc) ; il existe alors deux conventions,
En convention récepteur, aux bornes d’un appareil récepteur (exemple : conducteur ohmique), la
tension UAB est positive si elle est en sens opposé à l’intensité
Justification : le récepteur reçoit des électrons sur sa borne B, dont le potentiel est donc plus fait que celui
de la borne A. Ainsi, UAB = VA–VB > 0.
BA I
UAB = VA– VB
Si l’indication de l’ampèremètre est
négative, cela signifie que l’intensité
circule dans le sens inverse de celui
indiqué sur le schéma.
A
+ COM
I
BA I
UAB > 0
récepteur
3
En convention générateur, aux bornes d’un appareil générateur, la tension UAB est positive si
elle est dans le même sens que l’intensité
Justification : d’après le sens de I, on en déduit que B est la borne + du générateur alors que A est la borne
: par conséquent, VA < VB et UAB = VA– VB < 0 ; c’est bien UBA qui est positive.
3 – Interprétations énergétiques
En TP, nous avons amorcé la réflexion en traçant les caractéristiques de différents dipôles. Ces courbes
donnant la tension à leurs bornes en fonction de l’intensité du courant qui les traverse permet de décrire
tous les points de fonctionnement possibles des dipôles en régime continu (on parle de caractéristique
statique).
L’expérience conduit à considérer deux types de composants, les générateurs et les récepteurs, selon le rôle
qu’ils remplissent dans les applications courantes. Dans ces deux cas, les caractéristiques ont une attitude
similaire d’un dipôle à l’autre.
Vers une première interprétation de ces caractéristiques
Un générateur est limité dans la puissance qu’il peut fournir : c’est pourquoi lorsque l’intensité I augmente, la
tension U diminue. Il vient même un moment où le générateur peut se « mettre à genou » : la tension finit par
s’effondrer et s’annuler pour une intensité limite.
Un récepteur peut a priori recevoir une puissance de plus en plus grande, puisque U = f(I) est croissante ;
cependant, cette droite trouve une limite pour laquelle nous sortons du fonctionnement linéaire du composant
et nous entrons dans un domaine critique dans lequel l’intégrité du récepteur est mise en jeu.
Modélisation des caractéristiques
L’équation des caractéristiques obtenues U = f(I) peut se mettre sous la forme
U = E – rI pour un générateur
E représente la force électromotrice (ou f.é.m.), exprimée en volts, et r la résistance interne (en ) du
générateur, qui sont respectivement l’ordonnée à l’origine et l’opposé de la pente de la droite obtenue.
U = E’ + r’I pour un récepteur
E’ représente la force contre-électromotrice (ou f.c.é.m.), exprimée en volts, et r’ la résistance interne
(en ) du récepteur, qui sont respectivement l’ordonnée à l’origine et la pente de la droite obtenue.
Remarque
On comprend le sens de la résistance interne d’un composant : inéluctable, elle explique la dissipation
inhérente à tout composant, dite par effet Joule, et conduit à l’échauffement du composant.
BA I
UAB > 0
générateur
U
I0
U
I0
Caractéristique d’un générateur
C’est une droite affine décroissante
en convention générateur
Caractéristique d’un récepteur
C’est une droite affine croissante
en convention récepteur
4
Pour ce qui est de la notion de f.é.m. ou f.c.é.m., c’est moins clair : un générateur joue le rôle de « pompe à
électrons » et la tension qui est maintenue entre ses bornes sans prendre en compte la résistance interne
ici - joue donc un rôle électro-moteur. Un récepteur qui n’est pas ohmique pur présente en outre la propriété
de s’opposer à la force électromotrice du générateur : par exemple, lorsqu’un moteur tourne, il y a un
phénomène magnétique qui développe une différence de potentiel qui tente à s'opposer à la tension
d'alimentation ; on l'appelle force contre-électromotrice.
On peut maintenant proposer les modèles électrocinétiques suivants.
On vérifie bien, pour le générateur, U = E – rI et pour le récepteur U = E’ + r’I.
Remarquer le sens de I dans les deux cas, en accord avec les conventions.
Aspects énergétiques
Calculons les puissances aux bornes de chaque appareil.
Pour le générateur,
P = U I = EI – r
Le terme EI représente la puissance totale fournie par la source énergétique qui alimente le générateur : elle
peut être d’origine électrique (secteur), chimique (pile), mécanique (dynamo) et est bien liée à la force
électromotrice E.
Le terme rI² représente la puissance dissipée par effet Joule au sein du générateur.
P représente la puissance fournie au reste du circuit. En effet, si l’on part de la puissance apportée par la
source EI et qu’on y soustrait la puissance dissipée par effet Joule rI², on obtient bien la puissance qu’il
reste pour alimenter le circuit auquel est branché le générateur.
Pour le récepteur,
P = E’ I + r’I²
Le terme E’I représente la puissance utilisée par le récepteur pour remplir sa fonction : d’ordre mécanique
pour un moteur, d’ordre chimique pour un électrolyseur, etc…
Le terme r’I² représente la puissance dissipée par effet Joule dans le récepteur.
P représente la puissance totale reçue par le récepteur. En effet, cette puissance se répartit en puissance
utilisée effectivement par le récepteur pour une conversion liée à son rôle et une puissance dissipée
inévitablement par effet Joule.
Remarque : les considérations de puissances sont ici plus simples à mettre en œuvre quel celles d’énergie ;
toutefois, rappelons que les mêmes bilans peuvent être établis en terme d’énergies en multipliant chaque
puissance par la durée t.
G
I+
U
r
+
I
U
E – r I
r’
+
I
U
E’ r’ I
M
I
U
GENERATEUR
R
1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !