Sadiki Devoir de contrôle n° : 2 Vendredi 10 -02-2012

Page 1 sur 3
Collège Sadiki
Devoir de contrôle n° : 2
Sciences physiques
4ème maths
Vendredi 10 -02-2012
Profs : Fki, Abid, Hrizi et
Cherchari
Durée : 2 heures
N.B : tous les résultats seront exprimés littéralement avant toute application numérique.
Exercice 1 ( 4,5 pts ) :
On considère l’équilibre chimique auquel aboutit la réaction de formation du complexe de couleur
rouge sang de thiocyanatofer FeSCN2+ à partir des ions fer III ( Fe3+) et des ions thiocyanate (SCN-), dont
l’équation est symbolisée par : (Fe3+)aq + (SCN-)aq (FeSCN2+)aq.
A une température T constante, on réalise à t=0, un mélange de volume V constant contenant a mol
d’ions Fe3+ et b mol d’ions SCN-.
1°) Exprimer la constante d’équilibre K de la réaction étudiée en fonction de xf, a, b et V.
2°) dans le cas où le mélange initial est équimolaire :
a- Montrer que le taux d’avancement final vérifie l’équation : 2
f + A.f + 1 = 0. Donner l’expression de
A en fonction de a, V et K et calculer sa valeur.
b- Calculer le taux d’avancement final de la réaction, en déduire alors les concentrations des différents
constituants du système à l’équilibre dynamique.
On donne : K=100 à la température T V=0,5 L et a=10-2 mol.
3°) le mélange étant en équilibre, on diminue la température du mélange réactionnel, on constate que la
couleur rouge sang du mélange s’atténue. Préciser, en le justifiant, le caractère énergétique de la réaction
étudiée.
4°) Le système chimique est à l’équilibre à la température T, Dire en le justifiant, dans quel sens évolue la
réaction suite à un ajout :
a- D’une masse m de chlorure de fer III (FeCl3), sans variation sensible du volume du système.
b- De 0,5 L d’une solution de thiocyanate de sodium (NaSCN) de concentration molaire C=10-3 mol.L-1.
5°) L’augmentation de pression, à température constante, a-t-elle une influence sur l’équilibre chimique du
système ? justifier la réponse.
Exercice 2 ( 2,5 pts ) :
On donne Ke=10-14 à 25 °C.
1- Recopier et compléter le tableau suivant :
Forme acide
Forme basique
Ka
pKa
CN-
5.10-10
H3O+
-1,74
HClO
CH3NH2
2- Classer les bases par ordre de force de basicité décroissante. Justifier.
Exercice 1 ( 5 pts) :
Un condensateur de capacité C est chargé à l’aide d’un
générateur de tension délivrant à ces bornes une tension
constante U ( K2 ouvert et K1 fermé voir schéma ci-contre). Les
armatures A et B de ce condensateur chargé sont reliées à une
bobine d’inductance L de résistance négligeable. A un instant
t=0s, pris comme origine des temps on ouvre l’interrupteur K1
et on ferme K2. L’intensité i(t) du courant est comptée
positivement quand le courant circule dans le sens indiqué sur le schéma. On appelle q(t) la charge de
Chimie ( 7 points )
Physique ( 13 points )
(c)
(B)
(G)
K1
K2
2
U
uC
B
A
L
i
Fig 1
Page 2 sur 3
l’armature reliée au point A et on précise qu’à l’instant t=0s cette armature est chargée positivement.
1-
a) Etablir l’équation différentielle vérifiée par la charge
q(t).
b) Montrer que q(t) = Qmax sin(0t + q) est une
solution de cette équation différentielle pour une valeur
particulière de 0 dont on déterminera l’expression.
2- On donne dans la figure 2, les courbes de variation de
la charge q(t) du condensateur et de l’intensité de courant
i(t) qui traverse le circuit.
a- Identifier les courbes 1 et 2.
b- Déterminer l’expression de q(t) et celle de i(t).
On donne l’échelle :
* pour la charge q(t) : 2.10-5 C 1 carreau.
* pour l’intensité de courant i(t) : 1,5 mA 1 carreau.
4. a) Donner l’expression de l’énergie totale Etot du
circuit en fonction de q, i, L et C.
b) Montrer que ETot = Ec(t) + EL(t) est constante et
qu’elle est égale à 1
2.LIm2.
c) Déterminer l’expression de EC en fonction de i2.
d) sur la figure 3 on donne la courbe représentant
l’évolution de l’énergie électrique EC en fonction de i2.
Déterminer graphiquement l’inductance L, déduire la
valeur de la capacité C du condensateur.
Exercice 2 ( 8 pts ) :
Un oscillateur électrique comporte en série :
- Une bobine d’inductance L et de résistance r.
- Un conducteur ohmique de résistance R=20 .
- Un condensateur de capacité C.
Cet oscillateur est excité par une tension alternative sinusoïdale u(t)=Umsin(2Nt + u ) de fréquence N
réglable, de valeur efficace constante et dont la phase initiale est variable.
L’intensité instantanée du courant électrique qui circule dans le circuit est i(t)=Imsin(2Nt).
1- Sur l’écran d’un oscilloscope bicourbe, on visualise la tension u(t) et la tension uR(t) aux bornes du
résistor. Pour une pulsation 1 =400 rad.s-1, on obtient l’oscillogramme de la figure 1.
a- Préciser la tension visualisée sur chaque voie.
b- Représenter un schéma du circuit électrique et indiquer par un tracé clair les connexions avec
l’oscilloscope.
La sensibilité verticale de la voie 1 est de 5 V.div-1.
La sensibilité verticale de la voie 2 est de 2 V.div-1.
Voie 2
Voie 1
Fig 1
Fig 2
1
2
0
q(C) ; i(A)
t(s)
0
1
0
0
11
12
11,52
i2( (mA)2 )
EC(10-5 J)
9
50
Fig 3
Page 3 sur 3
2-
a- Calculer l’impédance Z du circuit.
b- Déterminer le déphasage  de la tension u(t) par rapport à l’intensité de courant i(t). Déduire la
phase initiale u de la tension excitatrice.
3- Etablir l’équation différentielle régissant les variations de i(t).
4- On donne, dans la figure 2, la construction de Fresnel incomplète relatives aux tensions maximales, le
vecteur
V représente la tension uC aux bornes du condensateur. L’échelle adoptée est : 2V1cm.
a- Compléter cette construction.
b- En déduire que la valeur, de la capacité du condensateur est C=100 µF, de l’inductance L 0,14 H et
de la résistance de la bobine r=10 Ω.
5- Exprimer la puissance moyenne électrique P1 consommée par le circuit en fonction de r, R et I
intensité efficace du courant dans le circuit. Déduire son expression en fonction de la tension efficace
U aux bornes du G.B.F, R, r, L, C et la pulsation 1. Calculer sa valeur.
6- La même puissance moyenne P1 peut être consommée par l’oscillateur avec une autre pulsation 2 du
G.B.F, montrer que 12=02. Calculer 2.
7- Pour une valeur 3 de la pulsation du générateur B.F, la puissance moyenne dissipée par l’oscillateur
est maximale.
a- Dans quel état se trouve le circuit ? donner la valeur de 3.
b- Montrer, que dans ces conditions l’énergie électromagnétique du circuit est constante. Calculer sa
valeur.
c- Comparer alors Ucm amplitude de la tension aux bornes du condensateur à Um. conclure.
d- Etablir l’expression de l’intensité de courant i(t) et des tensions u(t) et uc(t).
uc
V
Ucm
1 / 3 100%

Sadiki Devoir de contrôle n° : 2 Vendredi 10 -02-2012

La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !