TD 1 : Bases de la Logique Propositionelle Master 1 INFO
TD 1
Quelques Informations
page du cours sur Eprel : http://eprel.u-pec.fr/eprel/
Exercice 1 Traduisez la phrase suivante en une formule de la logique propositionelle.
1. Tintin n’est pas malin, ou, si Tintin aime la logique, Tintin est malin et Tintin n’est
pas paresseux.
Exercice 2 Supposant que la proposition “Tintin est malin” est vraie, la proposition “Tintin
est paresseux” est fausse, et “Tintin aime la logique” est vraie, est-ce que la phrase d’avant
est vraie ou fausse ?
Exercice 3 Dire pour les interprétations Vet les formules φsuivantes si V|=φ:
1. V(p) = vrai, V(q) = faux et φ= (pq)(p→ ¬q)
2. V(p) = V(q) = faux et φ= ((¬pq)(¬qp)) (pq)
3. V(p) = faux et V(q) = vrai et φ= ((¬pq)(q(pq))
4. V(p) = V(r) = vrai et V(q) = faux et φ= ((¬r→ ¬p∧ ¬q)s)(pqrs)
5. V(p) = V(q) = faux et V(r) = vrai et φ= (p(qr)) ((¬pq)(pr)).
Exercice 4 Construire les tables de vérité pour les formules suivantes :
1. (pq)(qp)
2. p(p→ ¬q)q
3. (p(qr)) (pq)(pr)
4. (p(qr)) ((pq)r)
Exercice 5 En utilisant la méthode des tableaux sémantiques, déterminez si les formules
suivantes sont satisfaisables, valides, ou non-satisfaisables :
1. φ1a∧ ¬(ba)
2. φ2((ac)(bc)) (¬b((ab)c))
3. φ3≡ ¬((ab)(¬b→ ¬a))
4. φ4((ab)(bc)) ((cb)(ba))
5. φ5(ab)((bc)(ac))
6. φ6((ab)(bc)) (ac)
1
Master 1 INFO TD 1 : Bases de la Logique Propositionelle
Exercice 6 Un prisonnier doit choisir entre deux cellules. Chaque cellule contient un tigre
ou une princesse, mais ne peut pas contenir un tigre et une princesse (“ou exclusif). On
suppose que le prisonnier préfère choisir une cellule qui contient une princesse. Pour l’aider à
choisir, un message est affiché sur chaque cellule, et un indice lui est donné. Pour chacune des
situations suivantes, représentez le problème sous la forme d’une formule propositionnelle et
utilisez la méthode des tableaux sémantiques pour résoudre l’énigme (donnez une cellule qui
contient une princesse, si elle existe) :
Situation 1
Message de la cellule 1 : Il y a une princesse dans cette cellule et un tigre dans l’autre ;
Message de la cellule 2 : Il y a une princesse dans une cellule et un tigre dans une
cellule ;
Indice : Un des messages est vrai, l’autre est faux.
Situation 2
Message de la cellule 1 : Une cellule au moins contient une princesse ;
Message de la cellule 2 : L’autre cellule contient une princesse ;
Indice : La cellule 1 contient une princesse si et seulement si son message est vrai, la
cellule 2 contient un tigre si et seulement si son message est vrai..
Exercice 7 Soient φet ψdeux formules de la logique propositionnelle. Dire des affirmations
suivantes si elles sont vraies ou fausses. Justifier vos réponses. Lorsque l’affirmation est
fausse, donner un contre-exemple.
1. Si ¬φest satisfaisable, alors φn’est pas satisfaisable.
2. Si φet φψsont valides, alors ψest valide.
3. Si φest satisfaisable et φψest valide, alors ψest satisfaisable.
4. Si φet φψsont satisfaisables, alors ψest satisfaisable.
2
TD 1 : Bases de la Logique Propositionelle Master 1 INFO
A. Tableaux Sémantiques : Algorithme
L’algorithme construit un arbre dont les noeuds sont des ensembles de formules.
Initialisation : au départ, l’arbre ne contient qu’un seul noeud : l’ensemble {φ};
Tant qu’il existe une feuille de l’arbre Fqui contient une formule ψqui est simplifiable
si φest simplifiable par une α-règle, alors on crée un fils F0àFF0est obtenu
supprimant φde Fet en ajoutant la formule (dans le cas d’une double négation) ou
les deux formules (pour les autres cas) obtenues par la simplification, à l’ensemble F0
si φest simplifiable par une β-règle, alors on crée deux fils F1et F2, chacun étant
obtenu en supprimant φde Fet en ajoutant respectivement les formules obtenues
par la simplification.
si toutes les feuilles de l’arbre contiennent une paire de littéraux complémentaires, alors
retourner non-satisfaisable, sinon retourner satisfaisable.
Règles de Décomposition :
α-formulae α1α2
¬¬φ φ φ
φ1φ2φ1φ2
¬(φ1φ2)¬φ1¬φ2
¬(φ1φ2)φ1¬φ2
φ1φ2φ1φ2φ2φ1
β-formulae β1β2
φ1φ2φ1φ2
¬(φ1φ2)¬φ1¬φ2
φ1φ2¬φ1φ2
¬(φ1φ2)¬(φ1φ2)¬(φ2φ1)
3
1 / 3 100%