C. R. Acad. Sci. Paris, Ser. I 337 (2003) 581–586
Group Theory/Algebraic Geometry
Two-variable identities for finite solvable groups
Tatiana Bandmana, Gert-Martin Greuelb, Fritz Grunewaldc, Boris Kunyavski˘
ıa,
Gerhard Pfisterb, Eugene Plotkina
aDepartment of Mathematics and Statistics, Bar-Ilan University, 52900 Ramat Gan, Israel
bFachbereich Mathematik, Universität Kaiserslautern, 67653 Kaiserslautern, Germany
cMathematisches Institut, Heinrich Heine Universität, 40225 Düsseldorf, Germany
Received 4 September 2003; accepted 8 September 2003
Presented by Jean-Pierre Serre
Abstract
We characterise the solvable groups in the class of finite groups by an inductively defined sequence of two-variable identities.
Our main theorem is the analogue of a classical theorem of Zorn which gives a characterisation of the nilpotent groups in the
class of finite groups by a sequence of two-variable identities. To cite this article: T. Bandman et al., C. R. Acad. Sci. Paris,
Ser. I 337 (2003).
2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
Résumé
Identités en deux variables pour les groupes résolubles finis. On caractérise les groupes résolubles dans la classe des
groupes finis par une suite d’identités en deux variables définies par récurrence. Le résultat principal peut être considéré comme
l’analogue du théorème classique de Zorn qui donne une caractérisation des groupes nilpotents dans la classe des groupes finis
par une suite d’identités en deux variables. Pour citer cet article:T. Bandman et al., C. R. Acad. Sci. Paris, Ser. I 337 (2003).
2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
Version francaise abrégée
Nous annonçons une caractérisation des groupes résolubles dans la classe des groupes finis par une suite
d’identités en deux variables de type Engel définies par récurrence.
Soit Gun groupe. Pour x,y G,ondénit
u1(x, y) :=x2y1x, et par récurrence un+1(x, y) := xun(x, y)x1,yu
n(x, y)y1.
On note que si un(x, y) =1, alors um(x, y) =1 pour tout m>n.
Le commutateur de a,b Gest défini par [a,b]:=aba1b1. Voici notre résultat principal :
Théorème 0.1. Pour qu’un groupe fini Gsoit résoluble, il faut et il suffit qu’il vérifie une des identités un(x, y) =1.
E-mail addresses: bandman@macs.biu.ac.il (T. Bandman), greuel@mathematik.uni-kl.de (G.-M. Greuel), fritz@math.uni-duesseldorf.de
(F. Grunewald), kunyav@macs.biu.ac.il (B. Kunyavski˘
ı), Pfister@mathematik.uni-kl.de (G. Pfister), plotkin@macs.biu.ac.il (E. Plotkin).
1631-073X/$ – see front matter 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights
reserved.
doi:10.1016/j.crma.2003.09.003
582 T. Bandman et al. / C. R. Acad. Sci. Paris, Ser. I 337 (2003) 581–586
Cet énoncé est l’exact analogue du théorème de Zorn qui caractérise les groupes nilpotents dans la classe des
groupes finis par des identités en deux variables. L’existence des lois (non explicites) en deux variables pour les
groupes résolubles finis a été démontrée dans [3,4]. B. Plotkin a proposé des identités (explicites et récursives) en
deux variables pour caractériser cette classe de groupes. Notre Théorème 0.1 établit sa conjecture sous la forme
modifiée.
Il est clair que tout groupe résoluble vérifie les identités un(x, y) =1 à partir d’un certain nN. Réciproque-
ment, si Gverifie l’identité un(x, y) =1, on déduit qu’il est résoluble du résultat suivant :
Théorème 0.2. Soit Gun groupe simple fini non abélien. Alors il existe x,y Gtels que u1(x, y) = 1et
u1(x, y) =u2(x, y).
Nous allons donner ici une idée de la démonstration du Théorème 0.2 dans le cas particulier G=PSL(2,Fq).
Soit wun mot en x, x1,y,y
1,etsoitGun groupe. Pour x,y G,ondénituw
1(x, y) :=
w, et par récurrence uw
n+1(x, y) := [xuw
n(x, y)x1,yu
w
n(x, y)y1].Soit R:= Z[t, u, v, w, z]l’anneau des
polynômes en cinq variables à coefficients dans Z,etsoient
x=x(t) =t1
10
,y=y(u,v,w,z) =uv
wz
des matrices sur R.Soital’idéal de Rengendré par le déterminant de yet par 4 polynômes que l’on obtient à
partir de l’équation matricielle uw
1(x, y) =uw
2(x, y),etsoitVwA5le sous-ensemble fermé de l’espace affine
de dimension 5 qui correspond à a.Soita0l’idéal de Rengendré par le déterminant de yet par les coefficients
des matrices que l’on obtient à partir de l’équation uw
1(x, y) =1, et soit Vw
0A5l’ensemble fermé correspondant
àa0. On va démontrer que pour tout q>3, il y a des Fq-points sur Vw\Vw
0.
Pour le mot w=x2y1x, l’ensemble fermé Vwa deux composantes irréductibles : l’une est Vw
0et l’autre,
qu’on note S, est absolument irréductible de dimension 2. L’application ϕ:SA1\{0}(x,y)=u, est une
fibration en courbes de genre 8. On pose C:= ϕ1(1), et d’après la borne de Hasse–Weil on conclut que pour
q>593, il y a des points Fq-rationnels sur C. Pour finir la démonstration du Théorème 0.2 dans le cas des groupes
PSL(2), nous exhibons, pour tout 3 <q<593, un Fq-point de C.
Nous allons décrire les composantesirréductibles de la variété Vwpour le mot w=[x,y]. L’idéal correspondant
acontient le polynôme (tz +vw)(v +w).SoitVw
1l’ensemble fermé défini par l’idéal qui est engendré par
aet v+w. Cette variété a 5 composantes parmi lesquelles l’une est de dimension 2 et coïncide avec Vw
0,etles
autres sont toutes de dimension 0 et chacune se décompose en 4 composantes absolument irréductibles sur le
corps de déploiement du polynôme 5z4+20z3+36z2+32z+16. Soit Vw
2l’ensemble fermé défini par l’idéal
qui est engendré par aet tz +vw. Comme ci-dessus, cette variété a 5 composantes, toutes de dimension 1,
parmi lesquelles l’une est contenue dans Vw
0et chacune des autres se décompose en 3 composantes absolument
irréductibles sur le corps de déploiement du polynôme t2+t1. Comme aucune des composantes, sauf celle qui
correspond aux solutions triviales de l’équation u1=u2, n’est absolument irréductible, notre méthode ne marche
pas pour le mot initial w=[x,y]. En effet, pour ce mot, l’analogue du Théorème 0.2 n’est pas valable.
1. Introduction
We announce a characterisation of the solvable groups in the class of finite groups by an inductively defined,
Engel like sequence of two-variable identities. Let Gbe a group and x,y G.Dene
u1(x, y) :=x2y1x, and inductively un+1(x, y) := xun(x, y)x1,yu
n(x, y)y1.(1)
The commutator of a,b Gis defined as [a,b]:=aba1b1. Our main result is
Theorem 1.1. A finite group Gis solvable if and only if for some nthe identity un(x, y) =1holds for all x,y G.
T. Bandman et al. / C. R. Acad. Sci. Paris, Ser. I 337 (2003) 581–586 583
Theorem 1.1 is analogousto a result of Zorn which characterises the nilpotent groups in the class of finite groups
by two-variableidentities, that is a finite group Gisnilpotentif and only if it satisfies one of the identities en(x, y) =
[x,y,y,...,y]=1(here[x,y]=xyx1y1,[x,y,y]=[[x,y],y], etc.). The existence of two-variable (but non-
explicit) laws for finite solvable groups is proved in [3,4]. B. Plotkin suggested explicit recursive two-variable
identities for characterising this class of groups. Theorem 1.1 establishes his conjecture in a modified form.
Clearly in every solvable group the identities un(x, y) =1 are satisfied from a certain nNonward. The non-
trivial direction of Theorem 1.1 follows immediately from
Theorem 1.2. Let Gbe a finite non-abelian simple group. Then there are x,y Gsuch that u1(x, y) = 1and
u1(x, y) =u2(x, y).
We remark that the equation u1(x, y) =u2(x, y) is equivalent to
x1yx1y1x2=yx2y1xy1.(2)
Using Thompson’s list of the minimal simple non-solvable groups [11] we only need to proveTheorem 1.2 for the
groups Gin the following list: (1) G=PSL(2,Fq)where q4(q=pn,pa prime), (2) G=Sz(2n), n N,n
3 and odd, (3) G=PSL(3,F3).HereSz(2n)(nN,n3) denote the Suzuki groups (see [9, XI.3]). For small
groups from this list it is an easy computer exercise to verify Theorem 1.2. There are for example altogether 44928
suitable pairs x, y in the group PSL(3,F3).
The general idea of our proof can be roughly described as follows. For a group Gin the above list, using a
matrix representation over Fqwe interpret solutions of the equation u1(x, y) =u2(x, y) as Fq-rational points of an
algebraic variety. Lang–Weil type estimates for the number of rational points on a variety defined over a finite field
guarantee in appropriate circumstances the existence of such points for big q. Of course we are faced here with the
extra difficulty of having to ensure that u1(x, y) = 1 holds. This is achieved by taking the x, y from appropriate
Zariski-closed subsets only. See Sections 2, 3 for the details.
The proof of Theorem 1.2 involves not only group-theoretic metods, but also algebraic geometry and computer
algebra, particularly, the packages SINGULAR [7] and MAGMA. Not only proofs but even the precise statements
of our results would hardly have been found without extensive computer experiments.
Theorem 1.1 has the following application in the profinite category (see [2]).
Theorem 1.3. Let F=F(x,y) denote the free group in two variables, and let
Fbe its profinite completion. Let
v1,v
2,...,v
m,...be any convergent subsequenceof the sequence (1)with limit ffrom
F. Then the identity f1
defines the profinite variety of prosolvable groups.
Theorem 1.2 also generates short presentations of some finite simple groups. Let Bbe the group generated by
x, y with the single relation (2), that is B=x, y |u1=u2. The solvable quotients of Bare all cyclic, but Bhas
at least all minimal simple groups from Thompson’s list as quotients. We for example found that PSL(2,F5)=
x, y |u1=u2,x
3=y2=1and Sz(8)=x, y |u1=u2,x
7=y5=(xy2)5=(x1y1xy2)2=1.
2. The case G=PSL(2,Fq)
We shall explain here a more general setup which will also shed some light on the somewhat peculiar choice of
the word u1in (1).
Let wbe a word in x, x1,y,y
1.LetGbe a group and x,y G.Dene
uw
1(x, y) := w, and inductively uw
n+1(x, y) := xuw
n(x, y)x1,yu
w
n(x, y)y1.(3)
Let R:= Z[t,u,v,w,z]be the polynomial ring over Zin five variables. Consider further the two following 2×2-
matrices over R.
584 T. Bandman et al. / C. R. Acad. Sci. Paris, Ser. I 337 (2003) 581–586
x=x(t) =t1
10
,y=y(u,v,w,z) =uv
wz
.
Let abe the ideal of Rgenerated by the determinantof yand by the 4 polynomials arising from the matrix equation
uw
1(x, y) =uw
2(x, y) and let VwA5be the corresponding closed set of 5-dimensional affine space. Let further a0
be the ideal of Rgenerated by the determinant of yand by the matrix entries arising from the equation uw
1(x, y) =1
and let Vw
0A5be the corresponding closed set. Our approach aims at showing that Vw\Vw
0has points over finite
fields. We have therefore searched for words wsatisfying dim(Vw)dim(Vw
0)1 and also dim(Vw)1. We have
only found the following words with this property.
x2y1x, y1xy, yx1y1,yxy
1,x
1yxy1x, x1yx1y1x. (4)
The extra freedom one might get by introducing variables for the entries of xdoes not lead to more suitable results.
Indeed, elements of GL(2)act (by conjugation) on the corresponding varieties, and every matrix of determinant 1
except ±1 is conjugate (over any field) to a matrix with entries like x.
Forthe last 5 of the words in (4)the correspondingclosed sets Vwdo not have absolutely irreduciblecomponents
which are not contained in Vw
0and in fact the analogue of Theorem 1.2 is not true for them. For the first word
w=x2y1xthe closed set Vwhas 2 irreducible components. One of them is Vw
0, the second which we call S
has dimension 2 and is absolutely irreducible. The map ϕ:SA1\{0}(x,y)=u, is a fibration with curves of
genus 8 as fibers. We put C:= ϕ1(1). According to the Hasse–Weil bound the number of Fq-rational points of C
is at least q+12paqdwhere dis the degree and pathe arithmetic genus of
C, the projective closure of C.
Computations give d=10 and pa=12. This implies that for q>593 there exist enough Fq-rational points on C
to prove Theorem 1.2 in the case of the groups PSL(2).
We conjecture after long computerexperimentsthat Theorem 1.1 holds for any sequence formed like in (3) from
any initial word not of the form u1=(x1y)k(k N). To prove this in the case of the groupsPSL(2)our approach
would require the study of the closed sets arising from the equations uw
i(x, y) =uw
j(x, y) (i, j 1,j >i). This
does not seem possible given the existing computer generation.
3. The case of the Suzuki groups
To prove Theorem 1.2, the Suzuki groups G=Sz(q) (q=2n,nodd) provide the most difficult case. This is
due to the fact that although Sz(q) is contained in GL(4,Fq)it is not a Zariski-closed set. In fact the group Sz(q)
is defined with the help of a field automorphism of Fq(the square root of the Frobenius), and hence the standard
matrix representation for Sz(q) contains entries depending on q. We shall describe now how our problem can still
be treated by methods of algebraic geometry.
Let R:= F2[a,b,c,d,a0,b
0,c
0,d
0]be the polynomial ring over F2in eight variables. Let π:RRbe its
endomorphism defined by π(a) =a0(a
0):= a2,...(d) := d0(d
0):= d2.Let Fbe the algebraic closure
of F2and consider a,...,d
0as the coordinates of eight dimensional affine space A8over F. The endomorhism π
defines an algebraic bijection α:A8A8. The square of αis the Frobenius automorphism on A8.LetpA8be
a fixed point of αn, then its coordinates are in F2nif nis odd and in F2n/2if nis even.
Consider further the two following matrices in GL(4,R)
x=
a2a0+ab +b0ba1
aa0+ba
010
a100
1000
,y=
c2c0+cd +d0dc1
cc0+dc
010
c100
1000
.
The matrices x, y also define maps from A8to GL(4,F). It can easily be checked that the matrices corresponding
to a fixed point of αn(nodd and n3) lie in Sz(2n).
T. Bandman et al. / C. R. Acad. Sci. Paris, Ser. I 337 (2003) 581–586 585
Let abe the ideal of Rgenerated by the 16 polynomials arising from the matrix equation (2) and let VA8be
the corresponding closed set. By a SINGULAR computation we find
Proposition 3.1. (1) dim(V)=2,(2(a)=a.
Using Proposition 3.1 we see that αdefines an algebraic map α:VV. Our task now becomes to show that
αn(nodd and n3) has a non-zero fixed point on the surface V. Our basic tool is the Lefschetz trace formula
resulting from Deligne’s conjecture proved by Fujiwara [5]. To apply the Lefschetz trace formula we need to study
the geometric structure of V, find its irreducible components and their singular loci, etc. All this was done using
SINGULAR as an indispensible tool. In fact we have:
Proposition 3.2. Let abe the quotient ideal of aby a3c2
0and let VA8be the correspondingclosed set. Then V
is the unique 2-dimensional irreducible component of V. We have α(V)=Vand Vis absolutely irreducible.
Let now UVbe the complement in Vof the closed set given by the equation cc0=0. We have
Proposition 3.3. Uis a smooth α-invariant absolutely irreducible affine surface with b1(U)675 and
b2(U)222.
Here bi(U)=dimHi
ét(U,Q#)are the #-adic Betti numbers (# = 2). The estimates contained in Proposition 3.3
are derived from results of Adolphson and Sperber [1] and Ghorpade and Lachaud [6] permitting to bound the
Betti numbers of an affine variety in terms of the number of variables, the number of defining polynomials and
their degrees. Note that since Uis affine, we have b3(U)=b4(U)=0. Since Uis non-singular, the ordinary and
compact Betti numbers of Uare related by Poincaré duality, and we have bi
c(U)=b4i(U).
Let Fix(U,n) be the number of fixed points of αnacting on U. From the Lefschetz trace formula applied to U
and from Deligne’s estimates for the eigenvalues of the endomorphism induced by αon étale cohomology we get
Fix(U,n)2nb1(U)23n/4+b2(U)2n/2.(5)
An easy estimate shows that Fix(U,n)= 0forn>48. The cases n<48 are checked with the help of MAGMA.
As a by-product of these computationswe found the first terms of the zeta-function of the operator αacting on the
set U. This is a rational function defined by
Z(α, T ) := exp
n=1
Fix(U,n)
nTn.(6)
We have found that Z(α, T ) is equal to (12T)(1T)(1T2)8(1+T2)3(2T4+2T2+1)(4T8+2T4+1)(2T2+2T+1)(8T6+4T5+T+1)
(12T2)3
up to terms of order T33. This formula suggests heuristic values b4
c(U)=1,b
3
c(U)=6,b
2
c(U)=43.
4. Analogues, problems and generalizations
Theorem 1.1 leads to some natural problems. It would be very interesting to understand the special role of our
initial word u1=x2y1x(see Section 2). Further, there is the following analogueof van der Waerden’s problems
for nilpotent groups. Fix nNand assume that a finite group Gsatisfies the identity un(x, y) =1. What can be
said about the derived length of G?
In connection with Theorem 1.1, one may think of its analogues for Lie algebras and infinite groups.
For finite dimensional Lie algebras the following Engel type result is proved in [8].
Theorem 4.1. Let Lbe a finite dimensional Lie algebra defined over a field kof characteristic different from
2,3,5.Let[,]denote its Lie bracket. Define
1 / 6 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !