loi d`Ohm, effet joule caractérisque générateur

publicité
Equipe de SPC du Lycée Pierre Paul Riquet
Classe de terminale S
Activité expérimentale
Le phénomène de diffraction
Informations
Qu’est-ce que la diffraction ?
La diffraction est une propriété des ondes qui se manifeste par un étalement des directions de propagation
de l'onde, lorsque celle-ci rencontre une ouverture ou un obstacle.
Exemples de figures de diffraction
Lumière LASER
Lumière LASER
Lumière d’une lampe
Ouverture : circulaire
Ouverture : fente verticale
fine trame d’un voilage
Comment étudier le phénomène ?
L’importance du phénomène de diffraction est mesurée par l’angle θ qui est l’angle entre la direction de
propagation de l’onde en l’absence de diffraction et la direction définie par le milieu de la première
extinction.
Matériel disponible :




un laser rouge ( = 650 nm)
DANGER pour la rétine
un banc optique gradué
un écran translucide avec support
support avec des fentes fines de différentes largeurs a
n°
a (m)




1
2
3
4
40
5
50
6
70
7
100
une caméra reliée à un ordinateur équipé du logiciel ovisio
un tableur informatique
une notice d’utilisation d’un tableur-grapheur
une notice d’utilisation du logiciel ovisio
8
150
9
200
10
11
12
But de la séance
Dégager les paramètres dont dépend la figure de diffraction et établir un modèle mathématique dans
le cas de la diffraction d’une lumière monochromatique de longueur d’onde  par une fente de largeur
a.
Travail à réaliser
1- Analyser : (20min)


Identifier les paramètres dont dépend la figure de diffraction.
Comment montrer l’influence de ces paramètres sur la figure de diffraction ?
2- Réaliser : (40min)
ATTENTION : ne pas déplacer la caméra




Mettre en œuvre le protocole permettant d’étudier l’influence de la largeur a de la fente sur la
largeur L de la tache centrale avec le logiciel Ovisio.
Saisir les valeurs dans un tableur grapheur.
Tracer la courbe L = f(a)
Décrire la courbe.
3- Valider : (40min)


Pour trouver le modèle mathématique qui semble le mieux convenir :
◦ Insérer une courbe de tendance.
◦ Faire afficher l’équation et le coefficient de détermination R2.
◦ La relation mathématique obtenue modélise d’autant mieux les résultats expérimentaux que le
coefficient de détermination R² est proche de 1.
Relever l’équation de la courbe de tendance en gardant un nombre de chiffres significatifs cohérent.
Calculer le produit 2D et comparer le résultat avec l’équation de la courbe de tendance.
En déduire la relation qui relie les grandeurs L, , D, et a et vérifier son homogénéité.

Utiliser le travail précédent pour déterminer le diamètre d’un cheveu.


Conclusion de la séance
Téléchargement
Explore flashcards