Patterns in Primes
References
P. T. Bateman and R. A. Horn, “A heuristic asymptotic formula concerning the distribution of
prime numbers,” Mathematics of Computation 16 (1962), 363–367.
K. Conrad, “Irreducible values of polynomials: a non-analogy,” pp. 71–86 in Number fields and
function fields – two parallel worlds, Bikrha¨user, 2005.
Online at http://www.math.uconn.edu/∼kconrad/articles/texel.pdf
T. Foo, “The Bouniakowsky conjecture and the density of polynomial roots to prime moduli,”
Acta Arithmetica 144 (2010), 1–4.
Online at http://arxiv.org/abs/0906.1240.
S. Lang, Math Talks for Undergraduates, Springer-Verlag, New York, 1999. (See Chapter 1.)
M. R. Murty, “Artin’s conjecture for primitive roots,” Math. Intelligencer 10 (1988), 59–67.
Online at http://www.math.ucsb.edu/∼agboola/teaching/2005/winter/old-115A/murty.pdf.
W. Narkiewicz, The Development of Prime Number Theory: from Euclid to Hardy and Littlewood,
Springer-Verlag, Berlin, 2000. (See Section 6.7.)
P. Ribenboim, The Book of Prime Number Records, Springer-Verlag, New York, 1988. (See
Chapter 6.)
H. Riesel, Prime Numbers and Computer Methods for Factorization, 2nd ed., Birkha¨user, Boston,
1994. (See Chapter 3.)
A. Schinzel and W. Sierpinski, “Sur certaines hypoth`eses concernant les nombres premiers,” Acta
Arithmetica 4(1958), 185–208. Erratum 5(1959), 259.
J. W´ojcik, “On a problem in algebraic number theory,” Math. Proc. Camb. Phil. Soc. 119
(1996), 191–200.
1